
Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00

Supplementary Materials for “Bayesian Graphical Models

for Multivariate Functional Data”

Hongxiao Zhu hongxiao@vt.edu

Department of Statistics

Virginia Tech

Blacksburg, VA 24061, USA

Nate Strawn nate.strawn@georgetown.edu

Department of Mathematics and Statistics

Georgetown University

Washington D.C. 20057, USA

David B. Dunson dunson@duke.edu

Department of Statistical Science

Duke University

Durham NC 27708, USA

Editor: Leslie Pack Kaelbling

1. More details of Algorithm 1

Step 0. Choose an initial decomposable graph G and the prior parameters c0, δ, U.

Step 1. With probability 1 − p, propose G̃ | G ∼ p(G̃ | G) by randomly adding or deleting
an edge (each with probability 0.5) in the space of decomposable graphs, and accept the
new G̃ with probability

α = min

{
1,

p(G̃ | {cMi }, cM0 ) p(G | G̃)

p(G | {cMi }, cM0 ) p(G̃ | G)

}
.

For the case of adding (i.e. G̃ has one more edge than G), there are two cases. Case (1), the
two nodes (denoted as k, l) being connected belong to two different connected components.
Here a connected component is defined as a cluster of nodes that are connected so that
for any node in the cluster there is a route from one node to another. In this case, the
likelihood ratio takes the form:

p({cMi } | cM0 , G̃)

p({cMi } | cM0 , G)
=

|Uk,l|
(δ+dk,l−1)/2

|Uk,k|
(δ+dk,k−1)/2|Ul,l|

(δ+dl,l−1)/2

×
|Ũk,k|

(δ̃+dk,k−1)/2|Ũl,l|
(δ̃+dl,l−1)/2

|Ũk,l|
(δ̃+dk,l−1)/2

×
Γdk,l(

δ̃+dk,l−1
2 )

Γdk,l(
δ+dk,l−1

2 )

Γdk,k(
δ+dk,k−1

2 )

Γdk,k(
δ̃+dk,k−1

2 )

Γdl,l(
δ+dl,l−1

2 )

Γdl,l(
δ̃+dl,l−1

2 )
,
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where Uk,k, Ul,l and Uk,l are sub-matrices of U associated with corresponding functional

components, and Γd(a) = πd(d−1)/2
∏d−1

i=0 Γ(a − i/2). Here dk,k, dl,l and dk,l are the size of
the corresponding sub-matrices. Case (2), the two nodes k, l being connected belong to the
same connected components. The decomposability implies that after connecting, k, l lie in
the same clique, denoted as Cq. Denote Sq = Cq \ {k, l}, Cq1 = Cq \ k, Cq2 = Cq \ l and
D = {k, l}, we can write UCq in the form of

(
USq USq ,D

UD,Sq UD

)
.

Then the likelihood ratio takes the form

p({cMi } | cM0 , G̃)

p({cMi } | cM0 , G)
=

|UCq |
(δ+dCq−1)/2|USq |

(δ+dSq−1)/2

|UCq2
|(δ+dCq2

−1)/2|UCq1
|(δ+dCq1

−1)/2

×
|ŨCq2

|(δ̃+dCq2
−1)/2|ŨCq1

|(δ̃+dCq1
−1)/2

|ŨCq |
(δ̃+dCq−1)/2|ŨSq |

(δ̃+dSq−1)/2

×
ΓdCq

(
δ̃+dCq−1

2 )

ΓdCq
(
δ+dCq−1

2 )

ΓdSq
(
δ̃+dSq−1

2 )

ΓdSq
(
δ+dSq−1

2 )

ΓdCq2
(
δ+dCq2

−1

2 )

ΓdCq2
(
δ̃+dCq2

−1

2 )

×
ΓdCq1

(
δ+dCq1

−1

2 )

ΓdCq1
(
δ̃+dCq1

−1

2 )

.

If using independent Bernoulli priors (with parameter r) for the edges included in G,
p(G̃)/p(G) = r/(1− r). The proposal ratio p(G̃ | G)/p(G̃ | G) = (p(p− 1)/2−ne)/(ne +1),
with ne the number of edges in G. The likelihood ratio for the case of deleting is simply
the inverse of that for the case of adding.

With probability p, propose G̃ ∼ Unif, a (discrete) uniform distribution supported on the
set of all decomposable graphs, and accept the proposal with probability

α = min

{
1,

p(G̃ | {cMi }, cM0 )

p(G | {cMi }, cM0 )

}
.

Repeat step 1 for a large number of iterations until convergence is achieved.

2. More details on setting model parameters

Several parameters need to be determined before applying Algorithm 1 or 2. The trun-
cation parameters {Mj} can be determined using some approximation criteria as discussed
in the paper. The degrees of freedom δ of the HIWPG prior of QC is chosen as a positive
integer. Smaller values of δ imply larger variances so that the prior is more “vague.” For the
scale matrix U of the HIWPG prior, we determine its value by first decomposing U = ZRZ,
where Z = diag{τ} is the marginal standard deviation of the basis coefficients. If using
FPC analysis, τ can be taken as the square root of the eigenvalues. In other cases, we
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suggest to choose τ to be proportional to the (marginal) sample standard deviation, from
the empirical Bayes perspective. The pattern of R can be hard to determine. We set R = I

in our simulations and real data application. Other priors, like the Hyper-inverse Wishart
g-prior of Carvalho and Scott (2009), would also be good options. In Algorithm 2, one also
needs to determine the noise variance Λ, whose value would influence the identification of
QC . In this work, we have assumed additive white noise. Any orthogonal basis transform of
Gaussian white noise is still white noise. The variance of the white noise in the frequency
domain equals the corresponding variance in the time domain up to a scale parameter,
which is approximately |Tj |/(|tj | − 1), where |Tj | is the length of Tj and |tj | is the number
of grid points on Tj . Therefore, we can estimate the white noise variance by firstly applying
a localized linear smoother to the function, and then computing the sample variances of the
residuals. This variance can then be transformed to the frequency domain. If using FPC
analysis, the PACE algorithm of Yao et al. (2005) can be directly applied to compute the
noise variances and eigenbasis, even for sparse functional data. For the initial values {cMi }
in Algorithm 2, one can simply set cMi = di. If the data are centered in a pre-processing
step, one can set cM0 to be the zero vector; otherwise, one can use the sample mean of the
estimated basis coefficients.

3. Methods for improving mixing

Even though the small-world sampler in the MCMC Algorithms 1 and 2 helps improve
mixing, as the number of vertices p and the truncation parameters {Mj}

p
j=1 increase, the

Metropolis-Hastings step may suffer low acceptance rate, causing slow convergence. More
advanced Monte Carlo strategies, such as parallel tempering Liu (2008), may be adopted
to further improve mixing. Another alternative is the Small-world MCMC with Tempering
algorithm proposed by Guan and Stephens (http://arxiv.org/abs/1211.4675), in which the
heavy tailed proposal in the small-world sampler is replaced by a tempered version of the
posterior distribution.

4. More results for simulation 2

A plot of the noisy data is shown in panel (a) of Figure 1, with its smooth estimates
shown in Panel (b). The posterior estimate of the data domain correlation is plotted in
panel (c), which corresponds to the true correlation plotted in (c) of Figure 2 in the main
text. The trace plot of the conditional log posterior densities of the graph is shown in panel
(d).
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Figure 1: Results for Simulation 2. (a): The plot of raw data for the first 10 samples of
functional component 1. (b): The posterior mean estimate of fi1(t) correspond-
ing to the curves in (a). (c): the posterior mean estimate of the data domain
correlation matrix. (d): The trace plot of the log posterior densities of the first
500 samples.
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