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Abstract One difficulty of designing efficient algorithms is that the
spectra data are of functional form. They are smooth curves
Fluorescence Spectroscopy provides a non-invasive tool ioth high resolution. Most literatures to date on fluores-
real time diagnosis of cervical pre-cancer. An importastiés cence spectroscopy diagnosis apply classification algosit
involved is to classify diseased tissue from normal usindgr mon “features” obtained from the spectra through dimensgsn r
tiple functional data observations—the fluorescence atioit- duction methods. Commonly used dimension reduction meth-
emission matrices (EEMs). This paper proposes a Bayesiais are principal component analysis ( Kamath et2807,
variable selection model to perform binary classificatiardd Palmer et al2003), or artificially selected intensity and shape
on multiple functional covariates. The model contains twoformation from the spectra (See Ramanujam et19a4).
major steps. In the first step, functional principal compuneClassification algorithms such as K-nearest neighbor,ateur
analysis or orthonormal basis expansion are used to approeitwork, support vector machine have been applied to the
mate functional curves and reduce the high-dimensional-fuffeatures”. All the above referred algorithms treat the fes
tional covariates to a finite number of scores. In the secorehce spectral curves and the reduced “features” equatywh
step, a Bayesian probit regression model is constructee-totgaining the algorithm. This assumption is problematicsin
lect the scores obtained from the first step and at the sange ttome information contained in the spectra is more disease-
perform classification. The variable selection is perfatmeelated hence plays more important role in classificatiae(S
through a mixture normal prior of the regression coeffidgenChang 2002 and Welch 1997). In this study, we look at the
And a latent variable is introduced to simplify computatioproblem from a functional data point of view. A Bayesian
MCMC methods—a Gibbs sampler and an alternative Hybxidriable selection model is proposed to perform binary-clas
Gibbs/Metropolis-Hasting sampler, are used to obtaingeossification based on multiple functional covariates—therftge
rior samples of the parameters. Simulations show that thence spectra obtained at each measurement. The proposed
model can not only produce accurate variable selection andthod contains two major steps. In the first step, functiona
classification results, but also provide good estimate@tt principal component analysis or orthonormal basis exansi
efficient functions associated with the functional covasa are used to approximate functional curves and reduce the hig
Application to spectroscopic data gives improved classifidimensional functional covariates to a finite number of esor
tion performance as compared with several other classditatin the second step, a Bayesian probit regression model is con
methods. structed to select the scores obtained from the first ste@aiand
the same time perform classification.
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Bayesian variable selection; Functional principal comgran  T1he data studied in this paper are drawn from a clinical
analysis study of using multiple fluorescence spectra to diagnose-cer

cal abnormalities. To avoid possible confounding effects d
to variabilities of device and tissue type, the data of cbers-
1. Introduction tion is obtained from a fixed instrument (called Fast EEM2)

and all normal observations are from a fixed tissue type—
Cervical cancer is one of the leading causes of cancer digatrsjuamous (ecto-cervix) tissue. Each observation consists
women. The prevention of cervical cancer can be signifigansleveral spectral curves measured in the following way: an ex
improved by diagnosis at early stage of the disease using @itation light at certain fixed excitation wavelength is guced
tomatic, low cost screening devices. Among existing diagrto illuminate the cervix tissue. The excitation light is aldsed
sis tools, fluorescence spectroscopy has been shown profssarious endogenous fluorescent molecules in tissudt+esu
ing as a non-invasive, real-time optical technology to dguaning in emission of fluorescent light. The emitted fluorescent
tatively detect cervical pre-cancer. An important goal 0bfl light is measured by an optical detector and the spectrum is
rescence spectroscopy diagnosis is to classify the didedise obtained as one smooth curve. The excitation light is var-
servations from normal ones based on the fluorescence spetat several different wavelengths and gives multiplespé
tra measurement. However, since the underlying biochémicarves for each measurement. The left panel of figure 1 shows
mechanisms associated with the fluorescence spectra-ditfee plot of one measurement. It contailts spectral curves
ences between normal and dysplastic tissue are not fully oreasured at excitation wavelengths ranging fig86 nm to
derstood, numerical algorithms need to be designed to fu&d nm with increments of0 nm. Each spectral curve con-
differentiating information from the spectra and perforiagd tains fluorescence intensities recorded on a range of emissi
nosis automatically. wavelengths betweed85nm and700nm. If we use a color



Spectral Curves at Different Excitations Excitation—Emission Matrix (EEM) Plot

(2]
c
2 — 330nm— 410nm
8 — — - 340nm 420nm
g — 350nm=— 430nm ’g o
18] o = = 360nm= - 440nm c n
e IS . — 370nm 450nm = ¥
o o — - 380nm 460nm D
() — 390nm 470nm| %
= — - 400nm— - 480nm <
- z o
5 S S
2 o z ¥
@ — S
g © g

8
£ 3 o
g g
3 o @
2 o 4 -
n o T T T T T T T

400 500 600 700 400 500 600 700
Emission Wavelength(nm) Emission Wavelength(nm)

Figure 1: The left panel plots the fluorescence spectralesuat different excitation wavelength. The right panel isnaage
plot of the excitation-emission matrix(EEM).

plot to represent the intensities, we can stack alllthepec- have zero mean, i.eE[z;;(t)] = p;(t) = 0, ¥i,Vj. Con-

tra and obtain an image as shown in the right panel of figugider i.i.d. binary responsgswhich indicates the binary class

1. We call such fluorescence spectroscopy data measuremiatiseach observation belongs to. Similarly to James (2002)

excitation-emission matrices (EEMSs). and Muller & Stadtrruller (2005), a generalized functional lin-
Note that each EEM measurement contdifsurves and ear regression model for multiple functional predictons ba

each curve is of dimension arour?®0, which gives3563 constructed by associating a univariate latent variapigith

points in total (all curves are truncated at the edges). tPoiw through

wise variable selection used in Brown et al9¢8, 2002) are 1 ifz <0,

not practical due to the computation burden brought by multi %= { 0 ifz>0. (1)

ple functional covariates. And another drawback of poirgew

variable selection is that it will ignore the high corretatiof where J

contiguous points caused by the functional property of tie ¢ L = _ ‘

variates. In this paper, we apply the standard function da “@=hot jz_:l /TJ @iy (8)0;(s)ds + e @)

analytical tools—functional principal component anadyer

function approximation using orthonormal basis (Ramsay@de; ~ N(0,1) determines a probit link betweep and

Silverman1997), to project functional data to the eigenspace. Note that we assumg;s are compact domains of; ().

or the space spanned by the orthonormal basis. A Bayedi@sed on above model setting, standard functional regres-

variable selection model is constructed on the domain of prion estimation paradigms, such as the EM algorithm in
jected scores for classification. James (2002), or the estimating equation method itiév &

The structure of this paper is as follows: sectbintro- Stadtniiller (2005) can be performed to estimate the intercept

duces the Bayesian probit model with variable selection fér and the coefficient functions;(¢)s. However, when the
classification problems involving multiple functional ewi+ i;(#)S contain large amount of redundant information which
ates. Two simulation studies are conducted in seciida is unrelated to the responses, the eff|C|ency of the modél wil
verify the effectiveness of the proposed model. Real data Bf Significantly reduced. Also, whehis large, the conver-
plication results to the fluorescence spectroscopy datarare 9ence of the estimation can hardly be guaranteed. This mo-

sented in sectiot. Further analysis and discussions of tH&/ates us to consider variable selection method whichcéele
model are shown in sectidn a subset of the covariates as predictors. Due to the infinite

dimensionality of functional data, point-wise selectioam
the predictorse;;(t) is not a practical choice. One can dis-
2. A Bayesian probit model with variable selection for  cretizez;;(¢) on a finite grid and transform the problem to
functional data classification a multivariate model, but this will ignore the correlatioa-b
tween contiguous points on the grid. A natural choice is to
Suppose we observe i.i.d. observations, each observatioapply standard functional dimension reduction methodg+to r
containsJ functions. For; = 1,...,nandj = 1,...,J, duce the dimension first and conduct variable selection en th
denotex;;(t) as thejth function observed from théh ob- reduced space. If we assumg, z;;(t) € H; for some sepa-
servation, and without loss of generality, assume all flonst rable Hilbert spacét,;, we can expand;;(¢) on a set of com-



plete orthonormal basigp’,}° where¢(-) is the density function ofV(0, 1) and I, is the
indicator function. And conditional o, we get a normal

> ; linear regression
2ii(t) = cijrdl(t) (3) ? Z=XB+e¢ (9)
k=1

) _ The latent variableg thus play the roles of simplifying com-
and the truncag)ed version of (3) can be used to approxima{ation by transferring the problem to a typical normal re-
45(t) since) i, cijil* < oo. And similarly, we assume gression (Albert & Chib 1993). For the convenience of set-

B;(t) € H;, thus ting priors and MCMC sampling, we can standardi¥ein
oo equation (9) by centering and scaling it to zero mean and unit
B,(t) = Z bjmf; (t) (4) variance. To perform variable selection, we introduce aehyp
1 parametet- to the priors of3 by

Note that the orthonormal basfg’, }32 , can be chosen to be Bl ~ N(0, %) (10)
a known basis such as a Fourier basis or a wavelet basis. [fjferex, = D,.RD,, R is the prior correlation matrix of,
addition, we assume;; (t) € L»[(] for the underlying sample and D, is the prior marginal standard deviation f which
space, i.e. E[z;;(t)?] < oo, Vt € T;,Vj, Mercer's theorem takes the form

and Karhunen-Leve theorem (Ash & Gardner 1975 ) sug-

gests to take the orthonormal basis to be the eigenfunatibns Dr = Diag{h, riv1i + (1 = mi)voi,i = 1,..., K} (11)

the covariance operatdf defined by where K = 3. p;, h is a large number giving a large prior

variance to the intercept terfly, andvy; >> vy; > 0 forall ;
Kz(t) = /x(s)k(S,t)dS, k(s,t) = Cov(x(s),x(t)) (5) sothatthe corresponding componengafill cluster around)
when7; = 0 and have relatively large variances when= 1.
In this case, the coefficien{s;;x, k = 1,...,00} are called Priors ofr; are set to be Bernoullig), i.e. f(7;) = wliw ™™,
functional principal component scoresof;(t). Using func- For simplicity, we assume;s are independent, and we can
tional principal component method is different from usinglways setv; = w, v1; = vy, andvy; = vy if no further infor-
known basis in that the eigenfunctions need to be estimate@tion is known about the priority of selecting certain gova
Various estimating methods are proposed as in Ramsay & 8ies. Generallyy represents the prior belief for the propor-

verman (1997), and in Hall, Mler & Wang (2006). tion of covariates to be selected. The estimation of theovect
Once the orthonormal basis has been chosen or estimated, (71, - - -, 7x) Will indicate the selection of the variables.
we can reduce equation (2) to When R is taken to be the identity matrix, the priors of each

component ofg is independent. Correlated priors are sug-
J P gested in George & McCulloch (1993, 1997). With the above
z = o+ Z Z Cijkbjk + € (6) setting of the priors, we get the joint posterior distribuatiof
J=1k=1 3, T conditional onZ as

wherep; is the truncation parameter for thiéh functional ¢ |7 V) x #(2|8, 7, Y)x(8|7)7(7)
predictor. We thus transfer the functional regression tdé-mu

tivariate regression. Variable selection can thereforedes X exp {_1(2 — Xg)T(Z — Xﬁ)}
to select among the reduced scofes,,j = 1,...,J,k = 2
1,...,p;}. For convenience, we denote 1 K
X |ZT|*% exp {—QQTETIB} H f(m) (12)
Ci = (1701'117 cee 7Ci1p17 oy Cigly e e ;Cin,]) i=1
B b b b b T Based on equation (8) and (12), we propose the following
B = (Bo:bars-- - bapys b by ) MCMC algorithm using Gibbs sampler to obtain posterior
Equation (6) can be simplified to samples:
) _ o) _(0 .
5= OB+ e (7) Sep 1: Set up the initial valugs(® () and the priors

V1,10 andw.
Let Z = (z1,...,22)0, Y = (y1,...,yn)" and X7 =
(CT,...,CT), then the conditional distribution of given 3
andY are

Forj = 1,...,nMc, conduct step 2-4, whemeMc is
the total number of iterations.
. Step 2: Conditional on3—1) andY’, sampleZ(7) from
F(Z|8,Y) H d(z; — C;3) (I{zi<0}m{yi:1} + I{Zizo}m{yi:o}) truncated Normal distribution (8).
i=1 Sep 3: Conditional onZ(), updates?) from a multi-
& €xp {—;(Z X T(Z - Xﬁ)} variate normal distribution.
ﬁ(j)|Z(j)7 Y ~ N(T_r_lXTZ(j), TT—l)

X I z; 0= +1 z; 0= (8)
1:[({ <opn{yi=1} + I{z 5000 {yi=0}) whereT, — XTX 4 -1,



Step 4: Updater(),

Simulation 1, Posterior Estimate of Beta(t)

Case 1: In case ofR = I, the posterior distribution ]
for 7, are independent fot = 1, ..., K, hence we
can update (/) marginally using posterior odds. i.e. R
m(me = 189, Z0)Y) ©
Tk =

W(Tk = O|ﬁ(])7 Z(J)7Y)

est.meanfun
0
1

k =1,...,K. Updater!”) = 1 with probability

ri/(re + 1). i

Case 2: In case ofR # I, the posterior distribution s |

for 7; are not independent. Metropolis-Hasting can T Poiniaie o5l
be used to propose the candidaté similarly as 2 — TrueBer

Brown et al.(1998). i.e. Based orli~, either - - o - o -
change one 1to 0, or change one Oto 1, or swap one
pair of 0 and 1 with certain pre-defined probability.

arg.t

MCMC algorithmin cas& is a hybrid Gibbs/Metropolis- Figure 2:Simulation 1- the posterior estimation 8ft)
Hasting sampling process since it combines Metropolis-
Hasting updates with a larger Gibbs sampling iteration.

Note that althoughry’”’ = 0 in iteration j indicates that (—1.12,—1.82,7.77,2.15,3.25) and each functional predic-
the kth covariate is not selected, we do not remove thigr is generated by adding a random ernéf0, 1) to each
covariate in thej+1)th iteration since the posterior samgomponent ofe. For the true coefficient functiop(t), we
ple forbgi) will be close to 0 and thus the contribution o§et the firsts cosine basis score to llg = b3 = by = 0,
that covariate to the regression model will be negligiblendb, = 5, b5 = —4, which corresponds to the true value
) _ of 7 = (0,1,0,0,1)T. The latent variables; are generated
An alternative to the aboye proposed MCMC algorithm [sing equation (2) by numerical integration. Note that)
to integrate out from equation (12) so thatcan be updated heeq to be centered first before integrating to satisfy the ze
independent of3. In this case, the posterior distribution ofegn assumption, arf is taken to be a scalar valaes. The
7 can not be marginally updated using posteripr odds asbiiﬂary responseg; are generated from the sign af We ran-
case 1, hence the stochastic search method using Metropgligniy takes00 observations as the training set and the rest
Hasting as in case 2 has to be used. However, since margipahe test set. The proposed model is applied to the above
updating ofr converges faster than the Metropolis-Hastingjmated data. For convenience of comparing the estimated
the alternative method does not show too much advantage.gafficients with the true values, we choose the same number
mixing. of cosine basis to reduce the dimension of the functional pre
dictor, which reduce the;(¢) to 5 scores. By choosing basis
3. Simulation study that coincides with the ones used to generate data, we min-
imized curve approximation error and it helps us to see the
Two simulations are conducted to verify the performance @$timation performance in the variable selection step.e8as
the proposed Bayesian variable selection model on furttioan the reduced cosine basis scores, the model is trainegl usin
data classification. Simulation 1 uses only one function@ pGibbs sampler stated in section 2 with= w = 0.4, R = I,
dictor, i.e. J = 1 in equation (2). Functional predictors,; = 20, vy = 0.02, and10000 MCMC iterations and3000
are generated usingorthonormal cosine basis on the intetburn-in period. By averaging the posterior samples ofve
val [0, 1] so that the curves are simple enough and we can gs¢the marginal posterior probabili{r; = 1,i =1,...,5}
a small number of orthonormal basis to approximate the futte-be(0.007, 1.00,0.018, 0.005, 1.000)”, which indicates that
tional predictor. Simulation 2 considers multiple funciéd our algorithm has correctly picked out the second and the fift
predictors for each observation, i.é. = 20 in equation (2). cosine basis scores with enough accuracy. The estimation of
Thus the total number of variables to be selected is relgtiveeduced coefficient scores are obtained by the posterior sam
large. The estimation results are shown and predictioriteesple mean, which are compared with the probit-link maximum
are compared with several other classifiers. likelihood estimation in table 1. Table 1 shows that the post
Smulation 1: Let the sample size to be = 1000, rior estimation of the coefficient scores is as good as the max
we simulate a single functional predictor for each obseniaaum likelihood estimate. Posterior prediction of coe#iui
tion, i.e., J = 1 in equation (2) and the index will be curve 3(t) can be easily computed by inverse cosine trans-
omitted in this simulation. Functional predictogs(¢) are form of the posterior samples of coefficient scores. Figure 2
generated using the first cosine basis on the closed sethows the posterior estimation gft) and the corresponding
[0,1], i.e. ¢o(t) = 1,¢1(t) = V2cos(knt),k = 1,...,4. 95% credible interval computed point-wisely usiag% and
The mean curve is predefined using cosine coefficients 97.5% quantile of the inverse transformed posterior samples.



Table 1: Simulation 1-the estimation of vectbcompared with maximum likelihood estimation(MLE). Notatl;indicates

P{r; = 1}. BVS: The Bayesian variable selection model proposed iticze2.

True MLE BVS
r B 8 SE.| 3 SE 95% C.. W
25% 97.5%

- -0.02]-009 0.11] 005 0.10] -0.15 0.27 -

0O O |-0.09 0.11]| 0.00 0.02|-0.04 0.04 | 0.007
1 5 | 494 048] 493 041| 417 5.77 | 1.000
0O O | 021 0.11] 0.01 0.04|-0.03 0.05 | 0.018
0O O |-008 0.11| 0.00 0.02|-0.04 0.04 | 0.005
1 -4 |-391 0.39]-3.96 0.33| -4.67 -3.34| 1.000

ROC Curve of Simulated Data——-Classifier Comparison

Posterior prediction for the test data can be easily contpute
by applying the posterior samples Gfvector to the cosine
basis scores of test set. Note that since the training set has
been centered and scaled to zero mean and unit variance, the
test data need to be centered and scaled using the mean and ENE
standard deviation obtained from the training set. If irgat do
y; = 1 as diseased ang; = 0 as normal class, the out-
of-sample prediction of test set provides sensitidigys and
specificity98% with a total misclassification rat&% and area .
under the ROC curve.986 (See Zweig & Campbell (1993) °
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Instead of using cosine basis to reduce the dimension, we S --- KNN

also tried to use functional principal component to approxi e

mate the functional predictor, the proposed model aredthin o |

and applied to the test data, the resulting prediction Heitgi ° . : o N - 3

is 91% and specificity i96%, total misclassification error is
6.5% and the area under the ROC curve to(bg87. These

results indicates that using functional principal comprte Fi%ure 3: Simulation 2— the ROC curves of different classifi-

1 - Specificity

reduce the dimension will produce as accurate prediction 5. ) ; : .
using cosine basis, although the data are not generategl u(s:ﬁ‘w'on models. BVS: the proposed Bayesian variable sefecti

sing : ' 9 9 model. KNN: K-nearest neighbor. LDA: Linear Discriminant
eigenfunctions.

i o ) Analysis. SVM: support vector machine. Note that all classi
Smulation 2: In this simulation, we evaluate the perforfiars are based on firstcosine basis scores

mance of the model with multiple functional predictors. Let

J = 20 in equation (2). Functional predictors are generated

similarly as simulation 1 using the firStcosine basis. Thus

the total number of scores in equation (6kis= J x p = 100.

For the coefficient scores we randomly choosgs out 0f 100

components to be nonzero, which take values from a unifotihe proposed model can obtain accurate estimation of-hoth

distribution with supporf—7, 7], and let the intercept, = 5. The prediction performance of the proposed Bayesian vari-

We use the same way as in simulation 1 to generate latent vabile selection model is compared with three other classifier

ables and binary responses, and to split the training and tscomparing the empirical ROC curves in figure 3. All the

sets. methods are based on the same dimension reduction method,
To app|y the proposed modeL we also chobsmsine ba- i.e. the first5 cosine basis scores. Note that the number of

sis to approximated the functional predictors as in sinmiat neighborsk used in KNN is the optimakt determined byl0

1. Under10000 MCMC iterations and2000 burn-in period, block cross validation using the training data. The dedaile

and with the prior setting to be = 0.15,R = I, v, = 20 prediction results are compared and reported in table 2e Not

andv, = 0.02, we get prediction result 8f5% sensitivity and that the sensitivities and specificities in table 2 are thietpo

99% specificity with total misclassification rafe5%. 14 out Picked from the ROC curves by using thresholds so that the

of 15 nonzero3 scores are correctly picked out with posterigiums of sensitivity and specificity are maximized. Figure 3

probabi”ty OfTi equa|s]_. The otherl have posterior proba_ and table 2 show that,if there exists redundant information

bility 0.974, and all thoseds with true valués have estimatedthe functional predictor, the variable selection modebusf

posterior probability of; = 1 less tharD.03. These results better prediction results than models using all the cotesia

show that, even with fairly large number of predictdrs= 20, equally.



Heat plot of the posterior probablity of tau=1 at each excitation wavelength
Table 2: Simulation 2— the comparison of classi 480
methods on the test set. AUC: Area under the RO!
Sens: sensitivity; Spec: specificity; MisR: misclassi
rate. The BVS, KNN, LDA, SVM are defined same a 410
ure 3.
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Method | AUC | Sens | Spec | MisR
BVS | 0.997| 95% | 99% | 2.5%
KNN | 0.905| 83% | 84% | 16.5%
LDA | 0.971| 92% | 90% | 9.0%
SVM | 0.963 | 98% | 80% | 12.0%
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Totally 1013 EEM measurements were made frail Figure 4: The posterior probability of; = 1 for all the scores
tients. Measurements were taken from different site. . wstained using functional principal components.
cervix and may include repeated measurements at the same
site. All the measurements were made using the same instru-
ment called FastEEM2. And all normal measurements were
those measured on squamous tissue, which reduced the con-
founding effects due to the tissue type. The curves were pre- S A ey
processed by background correction, smoothing and ragistr :
tion procedures. Data are split into a training set and astest
randomly with607 measurements in the training set attd
in the test set. The proportions of diseased cases withim eac s
set are).096, 0.080, respectively. Both cosine basis approxi- 8 YRR
mation and functional principal components are chosenes th '
way to reduce the dimension of functional predictors. The re | :
duced scores are centered and scaled to zero mean and unit  ° o
variance in the training set. To reduce possible bias, the re
duced scores of the test set is computed and normalized based i
on only information obtained from the training set. For exam 12 o LDA
ple, the eigenfunctions used for computing functional girin e
pal component scores of the test set are estimated from train ‘ ‘ ‘ ‘ ‘ ‘
ing set. And the mean and standard deviation used for normal- o0 02 o4 o8 o8 o
izing the test set are those estimated from the training set. 1-Speciicty

The proposed Bayesian variable selection model is applied
to the scores obtained from cosine basis expansion and func-
tional principal component analysis scores per curve are
used in both cases. For both types of scores, we set the priors
asw = 0.3, = 20,19 = 0.02, R = [ with 10000 MCMC
iterations anc2000 burn-in period. The posterior probabilteached sensitivitP0% and specificity70% with area under
ity of 7, = 1 in the functional principal component case arnhe curve0.83. The results for cosine basis expansion give
plotted as an image plot in figure 4. The x-axis in figure 4 itigher specificity but lower sensitivity.
dicates the five functional principal component scores feom
single excitation curve. The y-axis indicates the spectpg In summary, the proposed Bayesian variable selection pro-
curves. Figure 4 shows that, out &b principal component vides us an efficient classification algorithm on fluoreseenc
scores, only have posterior probability greater thaus. And spectroscopy data as compared with several other classifier
4 of theseb scores are the third or fourth principal compdRather than treating all scores equally, it reduces the @ime
nents. The posterior prediction results to the test set@re ¢ sion of the data to some scores by function approximation
pared with three other classifiers similarly as in simulatto or functional principal component analysis, and selectsuls
Table 3 shows a comparison between4lifferent classifiers scores for classification. For this particular data sefoaigh
used in simulation 2. Figure 5 shows the corresponding RG® total misclassification rate is 80% level (which is no
curves for the test data prediction. Both taBland figure better than the k-nearest neighbor method), it reducesske r
5 shows that the proposed Bayesian variable selection masfefalse negative diagnosis by providing sensitivity ashhég
performs better than the other three classifiers on botlstyhe90%, and at the same time remains a reasonable specificity at
curve approximation methods. Usifigorincipal components 70% level.

1 2 3 4 a

4. Fluorescence spectroscopy data classificatio The & Principle Components

ROC Curves of 4 Classifiers (Based on 5 FPCs Per Curve)

Sensitivity

.4

0.2

Figure 5:Empirical ROC curve for the test set.



Table 3: A comparison four classification methods. FPCAUging the firsts functional principal components. Cosine(5):
Using first5 cosine basis. Sens,Spec,MisR and BVS, KNN, LDA, SVM are ddfsame as in table 2.

FPCA(5) Cosing(5)

Method | AUC Sens Spec MisR | AUC Sens Spec MisR
BVS | 0.83 90% 73% 26%| 0.83 73% 79% 21%
KNN | 0.71 60% 84% 22% 0.71 60% 85% 18%
LDA | 0.70 87% 51% 46% 0.73 90% 54% 44%
SVM | 0.68 73% 65% 34% 0.68 83% 60% 39%

5. Discussion

The number of basis functions used in (2) for curve approxiFrediction Results Using Different Num.of Basis
mation is one concern of our study. Since the main purpose of
the study is prediction, we compute the prediction reswlts f

different number functional principal components and telbt 1= =< - égfsmvity

them as in figure 6. Different criterion may result in diffete ® To) S Specificity
choice. But in all, we can see that using aroéniinctional ; g I \

principal components gets sensitivity% and specificityr4% & \/\———\
with area under the ROC cunge83, which indicates a fairly c ] ‘\- ..

good prediction. Small misclassification rate may not be thg ﬁ | . \ 77"
best criterion to choose the number of basis since classifie® o . /

with higher specificity but lower sensitivity will tend to & 8 _. N/

lower misclassification rate because the number of diseased :

observation is fairly small as compared with the number of

normal observations. And in real application, we wish to ob-

tain enough sensitivity to reduce the risk of false negative

agnosis. 4 5 6 7 89
On setting up priors to the proposed model, since the scores

obtained by curve approximation will be normalized before Num.of Basis Used

applying variable selection, the priors @fvector will not be

influenced by the absolute levels of the data. And it turns out

that as long as the priors satisfy >> 1, > 0, the estimation

results of s andr won't be influenced much. Another issue

of concern is the convergence of MCMC. The convergence of

MCMC in this study is confirmed by running multiple chains

starting from different initial values. —
In summary, we have proposed a model on functional data

classification using Bayesian variable selection. This ehod §

uses probit link to connect the binary or ordinal responses t— —

the covariates and automatically selects informative gova .g

ates through a mixture normal prior of the regression coeffi$S

cients. The model shows advantages over classical cIaassifiéE

tion methods such as K nearest neighbor, linear dISCI’ImInaI’g ]

analysis and support vector machine. o
Future work to improve the precision of classification in-2

cludes trying more dimension reduction methods such as

Bayesian nonparametric techniques. Another possible im- I I I I I I I

provement is to build random effects caused by instruments, 4 56 7 8 9

tissue type and menopausal status into the variable smlecti

model to account for effects coming from these factors. Re-

ducing the dimension of EEM measurement by each excita- Num.of Basis Used

tions curve is just a convenient way of data pre-processing.

EEM plot in figure 1 shows obvious continuity across the ekigure 6: Prediction results under different number of func

citation curves. Hence the EEM data can be treated as @eghal principal components

functions. But since the data on the y-axis is very sparse,

methods involving variable selection on both directionsche

0.65
I

Misclassification Rate v.s. Num.of Basis

0.32
I

0.26
I

0.20
I



to be explored.
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