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Abstract

Fluorescence Spectroscopy provides a non-invasive tool for
real time diagnosis of cervical pre-cancer. An important issue
involved is to classify diseased tissue from normal using mul-
tiple functional data observations–the fluorescence excitation-
emission matrices (EEMs). This paper proposes a Bayesian
variable selection model to perform binary classification based
on multiple functional covariates. The model contains two
major steps. In the first step, functional principal component
analysis or orthonormal basis expansion are used to approxi-
mate functional curves and reduce the high-dimensional func-
tional covariates to a finite number of scores. In the second
step, a Bayesian probit regression model is constructed to se-
lect the scores obtained from the first step and at the same time
perform classification. The variable selection is performed
through a mixture normal prior of the regression coefficients.
And a latent variable is introduced to simplify computation.
MCMC methods–a Gibbs sampler and an alternative Hybrid
Gibbs/Metropolis-Hasting sampler, are used to obtain poste-
rior samples of the parameters. Simulations show that this
model can not only produce accurate variable selection and
classification results, but also provide good estimate of the co-
efficient functions associated with the functional covariates.
Application to spectroscopic data gives improved classifica-
tion performance as compared with several other classification
methods.

KEY WORDS: Fluorescence spectroscopy; Cervical cancer;
Bayesian variable selection; Functional principal component
analysis

1. Introduction

Cervical cancer is one of the leading causes of cancer deathsin
women. The prevention of cervical cancer can be significantly
improved by diagnosis at early stage of the disease using au-
tomatic, low cost screening devices. Among existing diagno-
sis tools, fluorescence spectroscopy has been shown promis-
ing as a non-invasive, real-time optical technology to quanti-
tatively detect cervical pre-cancer. An important goal of fluo-
rescence spectroscopy diagnosis is to classify the diseased ob-
servations from normal ones based on the fluorescence spec-
tra measurement. However, since the underlying biochemical
mechanisms associated with the fluorescence spectra differ-
ences between normal and dysplastic tissue are not fully un-
derstood, numerical algorithms need to be designed to find
differentiating information from the spectra and perform diag-
nosis automatically.

One difficulty of designing efficient algorithms is that the
spectra data are of functional form. They are smooth curves
with high resolution. Most literatures to date on fluores-
cence spectroscopy diagnosis apply classification algorithms
on “features” obtained from the spectra through dimension re-
duction methods. Commonly used dimension reduction meth-
ods are principal component analysis ( Kamath et al.2007,
Palmer et al.2003), or artificially selected intensity and shape
information from the spectra (See Ramanujam et. al1994).
Classification algorithms such as K-nearest neighbor, neural
network, support vector machine have been applied to the
“features”. All the above referred algorithms treat the fluores-
cence spectral curves and the reduced “features” equally when
training the algorithm. This assumption is problematic since
some information contained in the spectra is more disease-
related hence plays more important role in classification (See
Chang 2002 and Welch 1997). In this study, we look at the
problem from a functional data point of view. A Bayesian
variable selection model is proposed to perform binary clas-
sification based on multiple functional covariates–the fluores-
cence spectra obtained at each measurement. The proposed
method contains two major steps. In the first step, functional
principal component analysis or orthonormal basis expansion
are used to approximate functional curves and reduce the high-
dimensional functional covariates to a finite number of scores.
In the second step, a Bayesian probit regression model is con-
structed to select the scores obtained from the first step andat
the same time perform classification.

The data studied in this paper are drawn from a clinical
study of using multiple fluorescence spectra to diagnose cervi-
cal abnormalities. To avoid possible confounding effects due
to variabilities of device and tissue type, the data of considera-
tion is obtained from a fixed instrument (called Fast EEM2)
and all normal observations are from a fixed tissue type–
squamous (ecto-cervix) tissue. Each observation consistsof
several spectral curves measured in the following way: an ex-
citation light at certain fixed excitation wavelength is produced
to illuminate the cervix tissue. The excitation light is absorbed
by various endogenous fluorescent molecules in tissue, result-
ing in emission of fluorescent light. The emitted fluorescent
light is measured by an optical detector and the spectrum is
obtained as one smooth curve. The excitation light is var-
ied at several different wavelengths and gives multiple spectral
curves for each measurement. The left panel of figure 1 shows
the plot of one measurement. It contains16 spectral curves
measured at excitation wavelengths ranging from330 nm to
480 nm with increments of10 nm. Each spectral curve con-
tains fluorescence intensities recorded on a range of emission
wavelengths between385nm and700nm. If we use a color
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Figure 1: The left panel plots the fluorescence spectral curves at different excitation wavelength. The right panel is animage
plot of the excitation-emission matrix(EEM).

plot to represent the intensities, we can stack all the16 spec-
tra and obtain an image as shown in the right panel of figure
1. We call such fluorescence spectroscopy data measurements
excitation-emission matrices (EEMs).

Note that each EEM measurement contains16 curves and
each curve is of dimension around220, which gives3563
points in total (all curves are truncated at the edges). Point-
wise variable selection used in Brown et al. (1998, 2002) are
not practical due to the computation burden brought by multi-
ple functional covariates. And another drawback of point-wise
variable selection is that it will ignore the high correlation of
contiguous points caused by the functional property of the co-
variates. In this paper, we apply the standard functional data
analytical tools–functional principal component analysis or
function approximation using orthonormal basis (Ramsay &
Silverman1997), to project functional data to the eigenspace
or the space spanned by the orthonormal basis. A Bayesian
variable selection model is constructed on the domain of pro-
jected scores for classification.

The structure of this paper is as follows: section2 intro-
duces the Bayesian probit model with variable selection for
classification problems involving multiple functional covari-
ates. Two simulation studies are conducted in section3 to
verify the effectiveness of the proposed model. Real data ap-
plication results to the fluorescence spectroscopy data arepre-
sented in section4. Further analysis and discussions of the
model are shown in section5.

2. A Bayesian probit model with variable selection for
functional data classification

Suppose we observen i.i.d. observations, each observation
containsJ functions. Fori = 1, . . . , n and j = 1, . . . , J ,
denotexij(t) as thejth function observed from theith ob-
servation, and without loss of generality, assume all functions

have zero mean, i.e.E[xij(t)] = µj(t) ≡ 0, ∀i,∀j. Con-
sider i.i.d. binary responsesyi which indicates the binary class
that each observation belongs to. Similarly to James (2002)
and Müller & Stadtm̈uller (2005), a generalized functional lin-
ear regression model for multiple functional predictors can be
constructed by associating a univariate latent variablezi with
yi through

yi =

{

1 if zi < 0,
0 if zi ≥ 0.

(1)

where

zi = β0 +
J

∑

j=1

∫

Tj

xij(s)βj(s)ds + ǫi (2)

and ǫi ∼ N(0, 1) determines a probit link betweenyi and
zi. Note that we assumeTjs are compact domains ofxij(t).
Based on above model setting, standard functional regres-
sion estimation paradigms, such as the EM algorithm in
James (2002), or the estimating equation method in Müller &
Stadtm̈uller (2005) can be performed to estimate the intercept
β0 and the coefficient functionsβj(t)s. However, when the
xij(t)s contain large amount of redundant information which
is unrelated to the responses, the efficiency of the model will
be significantly reduced. Also, whenJ is large, the conver-
gence of the estimation can hardly be guaranteed. This mo-
tivates us to consider variable selection method which selects
a subset of the covariates as predictors. Due to the infinite
dimensionality of functional data, point-wise selection from
the predictorsxij(t) is not a practical choice. One can dis-
cretizexij(t) on a finite grid and transform the problem to
a multivariate model, but this will ignore the correlation be-
tween contiguous points on the grid. A natural choice is to
apply standard functional dimension reduction methods to re-
duce the dimension first and conduct variable selection on the
reduced space. If we assume∀j, xij(t) ∈ Hj for some sepa-
rable Hilbert spaceHj , we can expandxij(t) on a set of com-



plete orthonormal basis{φj
k}∞k=1

xij(t) =
∞
∑

k=1

cijkφj
k(t) (3)

and the truncated version of (3) can be used to approximate
xij(t) since

∑∞
k=1 |cijk|2 < ∞. And similarly, we assume

βj(t) ∈ Hj , thus

βj(t) =

∞
∑

k=1

bjkφj
k(t) (4)

Note that the orthonormal basis{φj
k}∞k=1 can be chosen to be

a known basis such as a Fourier basis or a wavelet basis. If in
addition, we assumexij(t) ∈ L2[Ω] for the underlying sample
spaceΩ, i.e. E[xij(t)

2] < ∞,∀t ∈ Tj ,∀j, Mercer’s theorem
and Karhunen-Lòeve theorem (Ash & Gardner 1975 ) sug-
gests to take the orthonormal basis to be the eigenfunctionsof
the covariance operatorK defined by

Kx(t) =

∫

x(s)k(s, t)ds, k(s, t) = Cov(x(s), x(t)) (5)

In this case, the coefficients{cijk, k = 1, . . . ,∞} are called
functional principal component scores ofxij(t). Using func-
tional principal component method is different from using
known basis in that the eigenfunctions need to be estimated.
Various estimating methods are proposed as in Ramsay & Sil-
verman (1997), and in Hall, M̈uller & Wang (2006).

Once the orthonormal basis has been chosen or estimated,
we can reduce equation (2) to

zi = β0 +
J

∑

j=1

pj
∑

k=1

cijkbjk + ǫi (6)

wherepj is the truncation parameter for thejth functional
predictor. We thus transfer the functional regression to mul-
tivariate regression. Variable selection can therefore beused
to select among the reduced scores{cijk, j = 1, . . . , J, k =
1, . . . , pj}. For convenience, we denote

Ci = (1, ci11, . . . , ci1p1
, . . . , ciJ1, . . . , ciJpJ

)

β = (β0, b11, . . . , b1p1
, . . . , bJ1, . . . , bJpJ

)T

Equation (6) can be simplified to

zi = Ciβ + ǫi (7)

Let Z = (z1, . . . , zn)T , Y = (y1, . . . , yn)T and XT =
(CT

1 , . . . , CT
n ), then the conditional distribution ofZ givenβ

andY are

f(Z|β, Y ) ∝
n

∏

i=1

φ(zi − Ciβ)
(

I{zi<0}∩{yi=1} + I{zi≥0}∩{yi=0}

)

∝ exp

{

−1

2
(Z − Xβ)T (Z − Xβ)

}

×
∏

i

(

I{zi<0}∩{yi=1} + I{zi≥0}∩{yi=0}

)

(8)

whereφ(·) is the density function ofN(0, 1) andI{·} is the
indicator function. And conditional onZ, we get a normal
linear regression

Z = Xβ + ǫ (9)

The latent variablesZ thus play the roles of simplifying com-
putation by transferring the problem to a typical normal re-
gression (Albert & Chib 1993). For the convenience of set-
ting priors and MCMC sampling, we can standardizeX in
equation (9) by centering and scaling it to zero mean and unit
variance. To perform variable selection, we introduce a hyper
parameterτ to the priors ofβ by

β|τ ∼ N(0,Στ ) (10)

whereΣτ = DτRDτ , R is the prior correlation matrix ofβ,
andDτ is the prior marginal standard deviation ofβ, which
takes the form

Dτ = Diag{h, τiν1i + (1 − τi)ν0i, i = 1, . . . ,K} (11)

whereK =
∑

j pj , h is a large number giving a large prior
variance to the intercept termβ0, andν1i >> ν0i > 0 for all i
so that the corresponding component ofβ will cluster around0
whenτi = 0 and have relatively large variances whenτi = 1.
Priors ofτi are set to be Bernoulli(ωi), i.e. f(τi) = ωτi

i ω1−τi

i .
For simplicity, we assumeτis are independent, and we can
always setωi ≡ ω, ν1i ≡ ν1, andν0i ≡ ν0 if no further infor-
mation is known about the priority of selecting certain covari-
ates. Generally,ω represents the prior belief for the propor-
tion of covariates to be selected. The estimation of the vector
τ = (τ1, . . . , τK) will indicate the selection of the variables.
WhenR is taken to be the identity matrix, the priors of each
component ofβ is independent. Correlated priors are sug-
gested in George & McCulloch (1993, 1997). With the above
setting of the priors, we get the joint posterior distribution of
β, τ conditional onZ as

f(β, τ |Z, Y ) ∝ π(Z|β, τ, Y )π(β|τ)π(τ)

∝ exp

{

−1

2
(Z − Xβ)T (Z − Xβ)

}

× |Στ |−
1

2 exp

{

−1

2
βT Σ−1

τ β

} K
∏

i=1

f(τi) (12)

Based on equation (8) and (12), we propose the following
MCMC algorithm using Gibbs sampler to obtain posterior
samples:

Step 1: Set up the initial valueβ(0),τ (0) and the priors
ν1,ν0 andw.

For j = 1, . . . , nMc, conduct step 2-4, wherenMc is
the total number of iterations.

Step 2: Conditional onβ(j−1) andY , sampleZ(j) from
truncated Normal distribution (8).

Step 3: Conditional onZ(j), updateβ(j) from a multi-
variate normal distribution.

β(j)|Z(j), τ, Y ∼ N(T−1
τ XT Z(j), T−1

τ )

whereTτ = XT X + Σ−1
τ .



Step 4: Updateτ (j).

Case 1: In case ofR = I, the posterior distribution
for τk are independent fork = 1, . . . ,K, hence we
can updateτ (j) marginally using posterior odds. i.e.

rk =
π(τk = 1|β(j), Z(j), Y )

π(τk = 0|β(j), Z(j), Y )

k = 1, . . . ,K. Updateτ
(j)
k = 1 with probability

rk/(rk + 1).

Case 2: In case ofR 6= I, the posterior distribution
for τi are not independent. Metropolis-Hasting can
be used to propose the candidateτ (c) similarly as
Brown et al.(1998). i.e. Based onτ (j−1), either
change one 1 to 0, or change one 0 to 1, or swap one
pair of 0 and 1 with certain pre-defined probability.

MCMC algorithm in case2 is a hybrid Gibbs/Metropolis-
Hasting sampling process since it combines Metropolis-
Hasting updates with a larger Gibbs sampling iteration.
Note that althoughτ (j)

k = 0 in iterationj indicates that
the kth covariate is not selected, we do not remove this
covariate in the(j+1)th iteration since the posterior sam-
ple for b(j)

ik will be close to 0 and thus the contribution of
that covariate to the regression model will be negligible.

An alternative to the above proposed MCMC algorithm is
to integrateβ out from equation (12) so thatτ can be updated
independent ofβ. In this case, the posterior distribution of
τ can not be marginally updated using posterior odds as in
case 1, hence the stochastic search method using Metropolis-
Hasting as in case 2 has to be used. However, since marginal
updating ofτ converges faster than the Metropolis-Hasting,
the alternative method does not show too much advantage on
mixing.

3. Simulation study

Two simulations are conducted to verify the performance of
the proposed Bayesian variable selection model on functional
data classification. Simulation 1 uses only one functional pre-
dictor, i.e. J = 1 in equation (2). Functional predictors
are generated using5 orthonormal cosine basis on the inter-
val [0, 1] so that the curves are simple enough and we can use
a small number of orthonormal basis to approximate the func-
tional predictor. Simulation 2 considers multiple functional
predictors for each observation, i.e.J = 20 in equation (2).
Thus the total number of variables to be selected is relatively
large. The estimation results are shown and prediction results
are compared with several other classifiers.

Simulation 1: Let the sample size to ben = 1000,
we simulate a single functional predictor for each observa-
tion, i.e., J = 1 in equation (2) and the indexj will be
omitted in this simulation. Functional predictorsxi(t) are
generated using the first5 cosine basis on the closed set
[0, 1], i.e. φ0(t) = 1, φk(t) =

√
2cos(kπt), k = 1, . . . , 4.

The mean curve is predefined using cosine coefficientsc =
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Figure 2:Simulation 1– the posterior estimation ofβ(t)

(−1.12,−1.82, 7.77, 2.15, 3.25) and each functional predic-
tor is generated by adding a random errorN(0, 1) to each
component ofc. For the true coefficient functionβ(t), we
set the first5 cosine basis score to beb1 = b3 = b4 = 0,
andb2 = 5, b5 = −4, which corresponds to the true value
of τ = (0, 1, 0, 0, 1)T . The latent variableszi are generated
using equation (2) by numerical integration. Note thatxi(t)
need to be centered first before integrating to satisfy the zero
mean assumption, andβ0 is taken to be a scalar value1.5. The
binary responsesyi are generated from the sign ofzi. We ran-
domly take800 observations as the training set and the rest
as the test set. The proposed model is applied to the above
simulated data. For convenience of comparing the estimated
coefficientβ with the true values, we choose the same number
of cosine basis to reduce the dimension of the functional pre-
dictor, which reduce thexi(t) to 5 scores. By choosing basis
that coincides with the ones used to generate data, we min-
imized curve approximation error and it helps us to see the
estimation performance in the variable selection step. Based
on the reduced cosine basis scores, the model is trained using
Gibbs sampler stated in section 2 withωi ≡ ω = 0.4, R = I,
ν1 = 20, ν0 = 0.02, and10000 MCMC iterations and3000
burn-in period. By averaging the posterior samples ofτ , we
get the marginal posterior probabilityP{τi = 1, i = 1, . . . , 5}
to be(0.007, 1.00, 0.018, 0.005, 1.000)T , which indicates that
our algorithm has correctly picked out the second and the fifth
cosine basis scores with enough accuracy. The estimation of
reduced coefficient scores are obtained by the posterior sam-
ple mean, which are compared with the probit-link maximum
likelihood estimation in table 1. Table 1 shows that the poste-
rior estimation of the coefficient scores is as good as the max-
imum likelihood estimate. Posterior prediction of coefficient
curve β(t) can be easily computed by inverse cosine trans-
form of the posterior samples of coefficient scores. Figure 2
shows the posterior estimation ofβ(t) and the corresponding
95% credible interval computed point-wisely using2.5% and
97.5% quantile of the inverse transformed posterior samples.



Table 1: Simulation 1– the estimation of vectorβ compared with maximum likelihood estimation(MLE). Note thatωiindicates
P{τi = 1}. BVS: The Bayesian variable selection model proposed in section 2.

True MLE BVS
τ β β̂ S.E. β̂ S.E. 95% C.I. ω̂i

2.5% 97.5%
- -0.02 -0.09 0.11 0.05 0.10 -0.15 0.27 -
0 0 -0.09 0.11 0.00 0.02 -0.04 0.04 0.007
1 5 4.94 0.48 4.93 0.41 4.17 5.77 1.000
0 0 0.21 0.11 0.01 0.04 -0.03 0.05 0.018
0 0 -0.08 0.11 0.00 0.02 -0.04 0.04 0.005
1 -4 -3.91 0.39 -3.96 0.33 -4.67 -3.34 1.000

Posterior prediction for the test data can be easily computed
by applying the posterior samples ofβ vector to the cosine
basis scores of test set. Note that since the training set has
been centered and scaled to zero mean and unit variance, the
test data need to be centered and scaled using the mean and
standard deviation obtained from the training set. If treating
yi = 1 as diseased andyi = 0 as normal class, the out-
of-sample prediction of test set provides sensitivity90% and
specificity98% with a total misclassification rate6% and area
under the ROC curve0.986 (See Zweig & Campbell (1993)
for ROC Curves).

Instead of using cosine basis to reduce the dimension, we
also tried to use functional principal component to approxi-
mate the functional predictor, the proposed model are trained
and applied to the test data, the resulting prediction sensitivity
is 91% and specificity is96%, total misclassification error is
6.5% and the area under the ROC curve to be0.987. These
results indicates that using functional principal component to
reduce the dimension will produce as accurate prediction as
using cosine basis, although the data are not generated using
eigenfunctions.

Simulation 2: In this simulation, we evaluate the perfor-
mance of the model with multiple functional predictors. Let
J = 20 in equation (2). Functional predictors are generated
similarly as simulation 1 using the first5 cosine basis. Thus
the total number of scores in equation (6) isK = J×p = 100.
For the coefficient scoresβ, we randomly choose15 out of100
components to be nonzero, which take values from a uniform
distribution with support[−7, 7], and let the interceptβ0 = 5.
We use the same way as in simulation 1 to generate latent vari-
ables and binary responses, and to split the training and test
sets.

To apply the proposed model, we also choose5 cosine ba-
sis to approximated the functional predictors as in simulation
1. Under10000 MCMC iterations and2000 burn-in period,
and with the prior setting to bew = 0.15,R = I, ν1 = 20
andν0 = 0.02, we get prediction result of95% sensitivity and
99% specificity with total misclassification rate2.5%. 14 out
of 15 nonzeroβ scores are correctly picked out with posterior
probability of τi equals1. The other1 have posterior proba-
bility 0.974, and all thoseβs with true value0s have estimated
posterior probability ofτi = 1 less than0.03. These results
show that, even with fairly large number of predictorsJ = 20,

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve of Simulated Data−−−Classifier Comparison

 
1 − Specificity

S
en

si
tiv

ity

BVS
KNN
LDA
SVM

Figure 3: Simulation 2– the ROC curves of different classifi-
cation models. BVS: the proposed Bayesian variable selection
model. KNN: K-nearest neighbor. LDA: Linear Discriminant
Analysis. SVM: support vector machine. Note that all classi-
fiers are based on first5 cosine basis scores

the proposed model can obtain accurate estimation of bothτ .
The prediction performance of the proposed Bayesian vari-
able selection model is compared with three other classifiers
by comparing the empirical ROC curves in figure 3. All the4
methods are based on the same dimension reduction method,
i.e. the first5 cosine basis scores. Note that the number of
neighborsk used in KNN is the optimalk determined by10
block cross validation using the training data. The detailed
prediction results are compared and reported in table 2. Note
that the sensitivities and specificities in table 2 are the points
picked from the ROC curves by using thresholds so that the
sums of sensitivity and specificity are maximized. Figure 3
and table 2 show that,if there exists redundant informationin
the functional predictor, the variable selection model offers
better prediction results than models using all the covariates
equally.



Table 2: Simulation 2– the comparison of classification
methods on the test set. AUC: Area under the ROC curve;
Sens: sensitivity; Spec: specificity; MisR: misclassification
rate. The BVS, KNN, LDA, SVM are defined same as in fig-
ure 3.

Method AUC Sens Spec MisR

BVS 0.997 95% 99% 2.5%
KNN 0.905 83% 84% 16.5%
LDA 0.971 92% 90% 9.0%
SVM 0.963 98% 80% 12.0%

4. Fluorescence spectroscopy data classification

Totally 1013 EEM measurements were made from521 pa-
tients. Measurements were taken from different sites of the
cervix and may include repeated measurements at the same
site. All the measurements were made using the same instru-
ment called FastEEM2. And all normal measurements were
those measured on squamous tissue, which reduced the con-
founding effects due to the tissue type. The curves were pre-
processed by background correction, smoothing and registra-
tion procedures. Data are split into a training set and a testset
randomly with607 measurements in the training set and406
in the test set. The proportions of diseased cases within each
set are0.096, 0.080, respectively. Both cosine basis approxi-
mation and functional principal components are chosen as the
way to reduce the dimension of functional predictors. The re-
duced scores are centered and scaled to zero mean and unit
variance in the training set. To reduce possible bias, the re-
duced scores of the test set is computed and normalized based
on only information obtained from the training set. For exam-
ple, the eigenfunctions used for computing functional princi-
pal component scores of the test set are estimated from train-
ing set. And the mean and standard deviation used for normal-
izing the test set are those estimated from the training set.

The proposed Bayesian variable selection model is applied
to the scores obtained from cosine basis expansion and func-
tional principal component analysis.5 scores per curve are
used in both cases. For both types of scores, we set the priors
asw = 0.3, ν1 = 20, ν0 = 0.02 , R = I with 10000 MCMC
iterations and2000 burn-in period. The posterior probabil-
ity of τi = 1 in the functional principal component case are
plotted as an image plot in figure 4. The x-axis in figure 4 in-
dicates the five functional principal component scores froma
single excitation curve. The y-axis indicates the spectroscopy
curves. Figure 4 shows that, out of80 principal component
scores, only5 have posterior probability greater than0.5. And
4 of these5 scores are the third or fourth principal compo-
nents. The posterior prediction results to the test set are com-
pared with three other classifiers similarly as in simulation 2.
Table 3 shows a comparison between the4 different classifiers
used in simulation 2. Figure 5 shows the corresponding ROC
curves for the test data prediction. Both table3 and figure
5 shows that the proposed Bayesian variable selection model
performs better than the other three classifiers on both types of
curve approximation methods. Using5 principal components

Figure 4: The posterior probability ofτi = 1 for all the scores
obtained using5 functional principal components.
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Figure 5:Empirical ROC curve for the test set.

reached sensitivity90% and specificity70% with area under
the curve0.83. The results for cosine basis expansion give
higher specificity but lower sensitivity.

In summary, the proposed Bayesian variable selection pro-
vides us an efficient classification algorithm on fluorescence
spectroscopy data as compared with several other classifiers.
Rather than treating all scores equally, it reduces the dimen-
sion of the data to some scores by function approximation
or functional principal component analysis, and selects useful
scores for classification. For this particular data set, although
the total misclassification rate is at20% level (which is no
better than the k-nearest neighbor method), it reduces the risk
of false negative diagnosis by providing sensitivity as high as
90%, and at the same time remains a reasonable specificity at
70% level.



Table 3: A comparison four classification methods. FPCA(5):Using the first5 functional principal components. Cosine(5):
Using first5 cosine basis. Sens,Spec,MisR and BVS, KNN, LDA, SVM are defined same as in table 2.

FPCA(5) Cosine(5)
Method AUC Sens Spec MisR AUC Sens Spec MisR
BVS 0.83 90% 73% 26% 0.83 73% 79% 21%
KNN 0.71 60% 84% 22% 0.71 60% 85% 18%
LDA 0.70 87% 51% 46% 0.73 90% 54% 44%
SVM 0.68 73% 65% 34% 0.68 83% 60% 39%

5. Discussion

The number of basis functions used in (2) for curve approxi-
mation is one concern of our study. Since the main purpose of
the study is prediction, we compute the prediction results for
different number functional principal components and plotted
them as in figure 6. Different criterion may result in different
choice. But in all, we can see that using around6 functional
principal components gets sensitivity87% and specificity74%
with area under the ROC curve0.83, which indicates a fairly
good prediction. Small misclassification rate may not be the
best criterion to choose the number of basis since classifiers
with higher specificity but lower sensitivity will tend to have
lower misclassification rate because the number of diseased
observation is fairly small as compared with the number of
normal observations. And in real application, we wish to ob-
tain enough sensitivity to reduce the risk of false negativedi-
agnosis.

On setting up priors to the proposed model, since the scores
obtained by curve approximation will be normalized before
applying variable selection, the priors ofβ vector will not be
influenced by the absolute levels of the data. And it turns out
that as long as the priors satisfyν1 >> ν0 > 0, the estimation
results ofβ andτ won’t be influenced much. Another issue
of concern is the convergence of MCMC. The convergence of
MCMC in this study is confirmed by running multiple chains
starting from different initial values.

In summary, we have proposed a model on functional data
classification using Bayesian variable selection. This model
uses probit link to connect the binary or ordinal responses to
the covariates and automatically selects informative covari-
ates through a mixture normal prior of the regression coeffi-
cients. The model shows advantages over classical classifica-
tion methods such as K nearest neighbor, linear discriminant
analysis and support vector machine.

Future work to improve the precision of classification in-
cludes trying more dimension reduction methods such as
Bayesian nonparametric techniques. Another possible im-
provement is to build random effects caused by instruments,
tissue type and menopausal status into the variable selection
model to account for effects coming from these factors. Re-
ducing the dimension of EEM measurement by each excita-
tions curve is just a convenient way of data pre-processing.
EEM plot in figure 1 shows obvious continuity across the ex-
citation curves. Hence the EEM data can be treated as 2-d
functions. But since the data on the y-axis is very sparse,
methods involving variable selection on both directions need
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to be explored.
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