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Abstract

Functional Data Classification and Covariance

Estimation

by

Hongxiao Zhu

Focusing on the analysis of functional data, the first part of this dissertation

proposes three statistical models for functional data classification and applies them

to a real problem of cervical pre-cancer diagnosis; the second part of the dissertation

discusses covariance estimation of functional data.

The functional data classification problem is motivated by the analysis of fluores-

cence spectroscopy, a type of clinical data used to quantitatively detect early-stage

cervical cancer. Three statistical models are proposed for different purposes of the

data analysis. The first one is a Bayesian probit model with variable selection, which

extracts features from the fluorescence spectroscopy and selects a subset from these

features for more accurate classification. The second model, designed for the prac-

tical purpose of building a more cost-effective device, is a functional generalized lin-

ear model with selection of functional predictors. This model selects a subset from



iii

the multiple functional predictors through a logistic regression with a grouped Lasso

penalty. The first two models are appropriate for functional data that are not contam-

inated by random effects. However, in our real data, random effects caused by devices

artifacts are too significant to be ignored. We therefore introduce the third model,

the Bayesian hierarchical model with functional predictor selection, which extends the

first two models for this more complex data. Besides retaining high classification ac-

curacy, this model is able to select effective functional predictors while adjusting for

the random effects.

The second problem focused on by this dissertation is the covariance estimation of

functional data. We discuss the properties of the covariance operator associated with

Gaussian measure defined on a separable Hilbert Space and propose a suitable prior

for Bayesian estimation. The limit of Inverse Wishart distribution as the dimension

approaches infinity is also discussed. This research provides a new perspective for

covariance estimation in functional data analysis.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Statistical theories generally fall into two categories: univariate and multivariate,

according to the dimensionality of the underlying random variables. For univariate

theory, the object of interest is a one-dimensional random variable (denoted by X)

which maps the sample space Ω to the real line R, i.e.,

X : (Ω,B(Ω)) 7→ (R,B(R)).

Here, for a given set A, B(A) represents the σ-field generated by subsets of A. The

pair (A,B(A)) is a measurable space, and the map X is measurable by the definition

of random variable. If the random element of interest is more than one dimensional,

1
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we use a random vector (denoted by ~X) instead and the measurable map becomes

~X : (Ω,B(Ω))) 7→ (Rm,B(Rm)),

where R
m is a m-dimensional Euclidean space. Statistical analysis for finite dimen-

sional random vectors (or random matrices) is called multivariate data analysis (see,

for example, Muirhead [50]). When m approaches infinity, the random vector becomes

a random sequence. A more general extension is to treat m as an index variable tak-

ing values from some index sets T (which can be uncountable). Then the measurable

map can be treated as a random function with argument in T . Under this setting, we

call the observed data, usually in forms of curves and images, “functional data”. The

statistical methods for analyzing functional data are named “functional data analy-

sis” (FDA), coined by Ramsay and Dalzell [59]. In many cases, the index set T is a

dense set such as a temporal or spatial domain, therefore ideally functional data can

have as high resolution as possible. In this dissertation, we let X(t) be the random

function indexed by t, t ∈ T and x(t) be its data realization. Alternatively, Ferraty

and Vieu [19] call X(t) a functional variable, defined as follows:

Definition 1.1.1. A random variable is called functional variable if it takes values in

an infinite dimensional space (or functional space). An observation of the functional

variable is called a functional data.(Ferraty and Vieu [19])

Many real data, such as most images and signals, can be treated as functional

data. Figure 1.1 shows an example of multivariate data and functional data. Another

practical example in medical research is shown in Section 1.2.
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Figure 1.1: The left panel is the data plot for the sepal length and width (in
centimeters) for 150 iris flowers, which is an example of multivariate data. There are
two measurements,length and width. The right panel is the plot of 39 boys’ heights
measured through age 1 to 18, which is is an example of functional data.

The research in FDA started in the 1980s. As time goes on, FDA becomes one of

the most important new statistical methodologies with diverse applications in many

areas. As a relatively new field, FDA borrows many ideas from non-parametric

statistics and multivariate data analysis, and adopts techniques from signal/image

processing, longitudinal data analysis and data mining. Generally speaking, we can

categorize current statistical methods in FDA literature as follows:

1. Smoothing and Registration. As preprocessing steps, smoothing and reg-

istration techniques help filter out noise (or observation errors) of the original

data and align them appropriately on their domain. Nonparametric regression

methods, such as smoothing spline and penalized methods, are usually used

for smoothing functional data. Registration is usually done by setting up a
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registration criterion, or using landmarks or warping functions.

2. Functional Principal Component Analysis (FPCA). As an important

dimension reduction technique in multivariate analysis, Principal Component

Analysis (PCA) finds the dominate modes of variation in the data. By changing

summations to integrations, this technique can also be extended to the func-

tional case.

3. Regression. Many works concerning regression problems in functional data

have been done, from both frequentist and Bayesian perspectives. It turns out

that most classical regression models in multivariate analysis, such as multi-

variate ANOVA, mixture effects model, generalized linear regression, have their

analogous version in FDA.

4. Hypothesis Testing. The topic of hypothesis testing in functional data is

not as well developed as other FDA methods. The main difficulty lies in the

assumption of infinite-dimensionality of the functional space. Recently, some

new methods are proposed on testing whether one group of functional data has

zero mean, or whether two groups have the same mean function.

1.2 A Functional Data Example.

The work in this dissertation is motivated by a series of fluorescence spectroscopy

data in cancer research. As a special type of functional data, spectroscopy data
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Figure 1.2: Using fluorescence spectroscopy to detect cervical pre-cancer in vivo.
This picture is obtained from http://www.eng.ucy.ac.cy/biaolab/Education/tutorials
[65].

contain the spectra of particular lights emitted (or absorbed) by a given material.

This section gives a brief introduction to the fluorescence spectroscopy data used in

cervical pre-cancer diagnosis.

Cervical cancer is known to be one of the leading causes of cancer deaths in

women. Early-stage diagnosis using automatic, low cost screening devices plays an

important role in the prevention of cervical cancer. Among the existing diagnosis

tools, fluorescence spectroscopy is a promising technology to quantitatively detect

cervical pre-cancer in a non-invasive way [57]. Figure 1.2 illustrates the mechanism of

measuring fluorescence spectroscopy in vivo. This technology works as follows: First,

an excitation light at a fixed wavelength illuminates the cervical tissue. During illu-

mination, the endogenous fluorescent molecules in tissue absorb the excitation light

and emit fluorescent light. The emitted light is then captured by an optical detector
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Figure 1.3: Left panel: spectral curves at 8 different excitation wavelengths ranging
from 330nm to 400nm. Right panel: heat plot of an excitation-emission matrix
(EEM).

which produces the corresponding spectrum as a smooth curve. By adjusting the

wavelength of the excitation light, the detector records multiple spectral curves. In

each measurement, the excitation light is varied at 16 different excitation wavelengths,

ranging from 330 nm to 480 nm with increments of 10 nm. This produces 16 spectral

curves for each measurement. In each curve, the fluorescence intensities are recorded

at emission wavelengths ranging between 385 nm and 700 nm. Through data prepro-

cessing, the curves are truncated so that some intensity points at the smallest and

largest emission wavelengths are removed.

Figure 1.3 illustrates one observation. The left panel shows the first 8 of the

total 16 spectral curves in this observation. The right panel shows a heat plot of

the spectral intensities, by stacking up all the 16 spectral curves in the order of their

excitation wavelength. We call such a set of fluorescence spectroscopy curves an
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Disease Level Discription Diagnosis
Cancer Evidence of cancer
CIS Carcinoma in situ
CIN III Severe cervical intraepithelia neoplasia Diseased
CIN II Moderate cervical intraepithelia neoplasia
CIN I Mild cervical intraepithelia neoplasia
HPV HPV associatied changes Normal
Atpia Atpia
Normal No evidence of disease

Table 1.1: The diagnosis levels and the discription

excitation-emission matrix (EEM).

The data considered in this dissertation contain 2414 measurements taken from

1006 patients. Each patient has 1 or more (up to 6) sites measured and there exists

repeated measurements (although not for every patient). All measurements come

from two devices (called Fast EEM2 and Fast EEM3), four probes and three clinics

(MDACC, LBJ and BCCA). The colposcopic tissue type of the measurements can

be either squamous or columnar. The menopausal status of the patients can be pre-

peri- and post-menopausal. After pre-processing such as background correction and

smoothing, the data were carefully split into training set and test set by balancing

various factors. The proportion of diseased cases in the training and test sets are 10%

and 9%, respectively.

The goal of our study is to discriminate normal from diseased measurements based

on the EEM. Table 1.1 lists the detailed disease categories provided by pathologists

in a progressive order. In our study, we consider all cases from CIN II or worse as

diseased, and cases from CIN I or better as normal.



8

450 550 650

35
0

40
0

45
0

The Median of All Normal−Case EEMs

Emission Wavelength(nm)

E
xc

ita
tio

n 
W

av
el

en
gt

h(
nm

)

450 550 650

35
0

40
0

45
0

The Median of All Diseased−Case EEMs

Emission Wavelength(nm)

E
xc

ita
tio

n 
W

av
el

en
gt

h(
nm

)

Figure 1.4: The heat plots for the median values of all normal-case EEMs versus the
median values of all disease-case EEMs.

Figure 1.4 shows the heat plots of the median values of all normal-case EEMs

versus those of all disease-case EEMs. Differences between the two plots are hard to

be detected by naked eyes, although the normal-case EEM seems to have higher peak

than the diseased-case EEM.

1.3 Literature Review

Much attention has been given to FDA since the 1980s. Early works include Ramsay

[58], Ramsay and Dalzell [59] and Rice and Silverman [64]. More recently, Ramsay and

Silverman ([62],[60]) did a systematic survey and addressed some applications issues

[61]. As summarized in Section 1.1, there are mainly four areas of FDA that have

received considerable attentions. Since this dissertation focuses on classification and

covariance estimation, we will only review the literature related to such topics, which
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include functional principal component analysis, regression and covariance estimation.

Other topics, like smoothing and registration of functional data, are well presented

in Chapter 3 − 5 and Chapter 7 of Ramsay and Silverman [62]; and one can find a

detailed review of hypothesis testing of FDA in Chapter 4 of Lee [36].

1.3.1 Functional Principal Component Analysis

As one of the basic and widely used techniques proposed for FDA, Functional principal

component analysis (FPCA) is a direct extension of multivariate principal component

analysis(PCA). FPCA was first introduced by Ramsay ([58], [59]), Rice and Silverman

[64], and was studied in detail by Ramsay and Silverman ([62],[60]). We briefly

summarize these works in this section. Later chapters will use compatible notations.

In multivariate data analysis, principal components are computed by eigenvalue

decomposition of the covariance matrix. Let X be a multivariate data matrix of size

n×p, its sample covariance V can be computed by V = 1
n
XT X. The first eigenvector

of X (denote φ1) can be obtained by

φ1 = argmax
||φ||=1

φT V φ,

which is equivalent to solving for the largest eigenvalue λ and the corresponding

eigenvector φ from

V φ = λφ. (1.1)

The first principal component scores can thus be obtained by XT φ1. Solving Equa-

tion (1.1) subject to the condition φT
2 φ1 = 0 gives the second eigenvector. Similarly,
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one can find out all eigenvectors.

In the functional data case, one can define the covariance operator V by

V φ(s) =

ˆ

T

v(s, t)φ(t)dt,

where v(s, t) = 1/n
∑

i xi(s)xi(t) is the sample covariance function and φ(·) is the

eigenfunction. The largest eigenvalue ρ and the corresponding eigenfunction φ(·) can

be solved from

V φ = ρφ, (1.2)

which is of the same form as Equation (1.1) except that V and φ are defined differently.

The first principal component score for xi(t) can be computed from 〈xi(t), φ1(t)〉.

Similar to the multivariate case, the second and later eigenfunctions can be obtained

by adding the orthogonal constraint to Equation (1.2). To solve Equation (1.2), one

can either discretize the xi(t)’s on a finite grid, or expand them on another set of

orthonormal basis.

In order to obtain eigenfunctions with sufficient smoothness, Rice and Silverman

introduces a smoothed PCA method by adding a roughness penalty [64]. In their

paper, the first eigenfunction is obtained by

φ1 = argmax
||φ||=1

〈φ, (V − λD)φ〉,

where D is a roughening operator taking form of F T F , where F is a second-order dif-

ferencing operator. The subsequent eigenfunctions are obtained by adding additional
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orthogonal conditions. The estimation of smoothed eigenfunctions is obtained by

finding the eigenfunctions of V −λD, where λ is chosen by cross-validation. Later on,

this method was improved in Silverman [68], where the first eigenfunction is solved

by

φ1 = argmax
〈φ, V φ〉

||φ||2 + λ[φ, φ]
,

and [φ, φ] =
´

(φ′′(t))2dt.

Following Silverman’s smoothed FPCA, more theoretical results of FPCA have

been investigated. Ocaña, Aguilera and Valderrama [54] assume Hilbert valued ran-

dom variables and established equivalences between FPCA with a proposed inner

product in the data space and certain FPCA with a given well-suited inner product.

They also extended Silverman’s method to a more general framework based on Hilbert

valued random variables. Cardot [12] proposed a non-parametric conditional FPCA

method and provided some consistency properties. Hall and Vial [29] studied the

extrema of empirical principal component functions and compared them with those

of the true principal component functions. They found that the empirical principal

component functions can hardly distinguish a “shoulder” in a curve from a small

bump. So they suggest a bootstrap method to assess the strength of the extrema.

More properties of FPCA were discussed by Hall and Hosseini-Nasab [27], where they

studied properties of FPCA through stochastic expansions. Their work demonstrated

the fact that the properties of eigenfunction estimations are affected by the spacing

among eigenvalues. They also propose bootstrap methods to construct simultaneous
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confidence regions for eigenvalues and eigenvectors.

The sparsity of functional data has also caught much attention. James, Hastie

and Sugar[33] introduce a reduced rank mixed effect model to estimate the principal

component functions when data are irregular and sparse. Hall, Müller and Wang

[28] focus on the effect of the sampling plan to the estimation of principal compo-

nent functions. They indicate that the sparsity of the functional data can affect the

convergence rates for the estimated eigenfunctions, but not for the estimated eigen-

values. Yao and Lee [80] propose penalized spline models for sparse functional data or

longitudinal data. They developed an iterative procedure to reduce the dependence

between the measurements within each subject (the dependence between the discrete

points measured on the same curve).

Besides these theoretical works, many others aim at applying FPCA to solve a

broad range of functional data problems, such as Grambsch et al. [25], James [32],

Chiou, Müller and Wang [15], Park [55].

1.3.2 Functional Data Regression

To extend multivariate regression to the functional case, the most straightforward way

is by using the point-wise models, which is similar to the varying coefficient model

or the contemporary model (see Hastie and Tibshirani [31] and Staniswalis and Lee

[70]). Let Yi(t) be the functional responses and xi(t) be the covariates, i = 1, . . . , n.
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Suppose that the point-wise model takes form

yi(t) = α(t) + xi(t)β(t) + ǫi(t).

Cardot, Ferraty and Sarda [13], James [32] and Malfait et al. [41] considered the case

where the the response values at time t are explained by the predictor curves xi(s)

through:

yi(t) = α(t) +

ˆ

Ti

xi(s)β(s, t)ds + ǫi(t),

where Ti = [0, t] or [t − δ, t].

In many cases, regression with functional predictors and scalar responses is of

particular interest. James [32] extended the generalized linear model (GLM) using

spline basis to include functional predictors. Müller and Stadtmüller [51] proposed

a similar method based on truncated Karhunen-Loéve expansion and proved some

asymptotic properties of the estimation. To summarize the basic structure, let us

assume that the functional generalized linear model takes form

Y = g(α +

ˆ

β(t)X(t)dt) + ǫ,

where Y is a univariate response variable, X(t) is the functional predictor, and g(·)

is an appropriately defined link function. Cardot and Sarda [14] analyzed the link

between a scalar response and a functional predictor in a regression setting by means

of a functional GLM. Besse et al.[6] also discussed several estimation methods under

functional GLM setting. Li and Hsing [38] investigated the convergence rate of the

estimation of the regression weight function in a functional linear regression model.
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Another interesting model is the functional analysis of variance (FANOVA), in

which functional responses are assumed. The predictors are usually real or dummy

variables. The FANOVA model can be written as

Yli(t) = µ(t) + αl(t) + ǫli(t),

where Yli is the ith observation in group l, µ(t) is the grand mean and αl(t) is the

effect of group l such that
∑

l α(t) = 0 for all t. This model can be written in a more

general form as

y(t) = Zβ(t) + ǫ(t),

where Z is a design matrix and β(t) is a vector of regression functions. Here both

y(t) and ǫ(t) can be vector of functions. Detailed fitting procedures can be found

in Ramsay and Silverman [60]. Cardot[11] proposed a nonparametric estimator of

regression function when the predictor is real but the response is functional.

From Bayesian perspectives, Morris et al. applied discrete wavelet transform

(DWT) to the modeling of hierarchical functional data [49]. Morris and Carroll [48]

extended linear mixed model to functional mixed model, which is given by

Y (t) = XB(t) + ZU (t) + E(t),

where Y (t) is a vector of N functional responses and B(t) is a p−vector of fixed

effect functions associated with the N × p design matrix X. U (t) is a m−vector of

random-effect functions associated with the N ×m design matrix Z. E(t) is a vector

of error process. The above model is transformed to wavelet domain through DWT,
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where Bayesian methods are used to estimate the regression parameters. A similar

model was applied to the accelerometer data in Morris et al. [46], [47]. McKeague

[42] used Bayesian nonparametric regression and time warping to solve the signature

verification problem. Behseta et al. [5] discussed some methods to account for esti-

mation variation using Bayesian hierarchical models. More recent works on Bayesian

functional data regression can be found in [10], [71], etc.

1.3.3 Functional Data Covariance Estimation

The most popular way of estimating the covariance of functional data is through

orthogonal expansions, that is, write the covariance function as a weighted linear

combination of eigenvalues and eigenfunctions:

γ(s, t) =
∑

k

λkφk(s)φk(t),

and the estimation methods are the same as in FPCA in Section 1.3.1. Smoothing

steps are usually introduced when estimating the eigenfunctions, such as the penalized

method in Rice and Silverman [64] and the scatter-plot smoothing in Yao et al. [79].

Alternatively, Lee [37] estimated the covariance matrix through sample estimates on

a finite grid. They then smoothed the eigenvectors of the covariance matrix to obtain

the eigenfunctions. A summary of these works can be found in the dissertation of Lee

[36].

Yao [78] applied kernel method in Longitudinal data analysis to estimate the

mean and covariance function of functional data, based on the Nadaraya-Waston
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estimator or local linear estimator. He also derived the asymptotic distribution of

such nonparametric estimator for functional data contaminated with measurement

error.

1.4 Outline of the Dissertation

We introduce some background knowledge in Chapter 2. In Chapter 3, a Bayesian

probit model with variable selection is proposed for functional data classification and

applied to the fluorescence spectroscopy data. To select a subset of the multiple

functional predictors for more cost-effective classification, we propose a functional

generalized linear model with a grouped-lasso penalty in Chapter 4, from a frequentist

point of view. Chapter 5 extends the Bayesian probit model in Chapter 3 to account

for random effects and to select functional predictors. Chapter 6 discusses covariance

estimation of functional data. Further conclusions and discussions are put in Chapter

7.



Chapter 2

Background

2.1 Convergence of Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) originated in statistical physics, marked by a

paper of Metropolis et al. [44] in 1953. Since then, MCMC has become increasingly

popular in Bayesian modeling. In this section, we review some theoretical background

of MCMC, especially on the convergence of Gibbs and Metropolis algorithms. The

review is based mainly on Tierney’s work [73], and partly on Professor Dennis D.

Cox’s class notes for Stochastic Process (taught in Spring, 2008). We only consider

Markov Chains with continuous state space.

17
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2.1.1 General Definitions and Results

Let π be the posterior distribution of interest. Suppose π is supported on E ⊂ R
k and

is absolutely continuous with respect to a σ-finite measure µ, i.e., π(dx) = π(x)µ(dx).

The main purpose of MCMC algorithms is to generate dependent samples (Markov

chain) Xn, n = 1, 2, . . . with equilibrium distribution π. In other words, we want Xn

to converge in distribution to π as n increases.

Assume that a time-homogeneous Markov chain with invariant distribution π has

transition kernel defined by

P (Xn, A) = Pr{Xn+1 ∈ A|X0, . . . , Xn} = Pr{Xn+1 ∈ A|Xn} = Pr{X1 ∈ A|X0}

for all measurable sets A ∈ E , where E is the σ-field generated by E. π is called

an invariant distribution with respect to P (·, A) if π(A) =
´

P (x,A)π(dx). The

conditional distribution of Xn given X0 is written as

P n(X0, A) = Pr{Xn ∈ A|X0},

where P n denotes the nth iterate of the kernel P . A formal definition of the transition

kernel is stated in Definition 2.1.1.

Definition 2.1.1. (Transition Kernel) Let E be a countably generated σ-algebra

on E. A (Markov) transition kernel on (E, E) is a map P : E × E → [0, 1] such that:

(1) ∀A ∈ E, the function P (·, A) is measurable;

(2) ∀x ∈ E, the function P (x, ·) is a probability measure on (E, E).
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For a probability measure ν, a transition kernel P on (E, E) and a real-valued

E-measurable function h, define νP , Ph and νh by

(νP )(A) =

ˆ

P (x,A)ν(dx), (Ph)(x) =

ˆ

h(y)P (x, dy), νh =

ˆ

h(y)ν(dy),

∀x ∈ E and A ∈ E . In other words, P (·, ·) is an operator that plays two roles. For

a probability measure ν on (E, E), νP is a probability measure. νP can be thought

of as the distribution of Xn+1 when Xn ∼ ν. For a bounded function h : E → R, Ph

can be thought of as a conditional expectation: (Ph)(x) = E[h(Xn+1)|Xn = x]. A

non-negative real-valued function h is called harmonic for P if h = Ph.

Definition 2.1.2. (Irreducible) A transition kernel P on (E, E) is π-irreducible if

π(E) > 0 and for each x ∈ E and each A ∈ E with π(A) > 0, there exists an integer

n = n(x,A) ≥ 1 such that P n(x,A) > 0.

A Markov chain with invariant distribution π is irreducible if, for any initial state, it

has positive probability of entering any set to which π assigns positive probability.

Definition 2.1.3. (Periodic) A π-irreducible transition kernel P is periodic if there

exists an integer d ≥ 2 and a sequence {E0, E1, . . . , Ed−1} of d nonempty disjoint sets

in E such that for all i = 1, . . . , d − 1 and all x ∈ Ei,

P (x,Ej) = 1 for j = i + 1(mod) d.

In this case, we call C =
⋃d−1

i=0 Ei a d-cycle. If P is not periodic, we call it aperiodic.

In other words, a chain is periodic if there are portions of the state space it can only

visit at certain regularly spaced times.
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Definition 2.1.4. (Recurrence) A π-irreducible chain {Xn} with invariant distri-

bution π is recurrent if for each B with π(B) > 0,

Px{Xn ∈ B i.o.} > 0 for all x,

Px{Xn ∈ B i.o.} = 1 for π-almost all x.

The chain is Harris recurrent if Px{Xn ∈ B i.o.} = 1 for all x.

Here Px{A} denotes the probability that event A happens when a Markov chain with

transition kernel P starts at x. The notation {An i.o.} means that sequence An occurs

infinitely often, i.e.,
∑

1An
= ∞. The chain is called positive recurrent if the total

mass of its invariant measure is finite; otherwise it is null recurrent (Note here we

assume the chain is π-irreducible and π-invariant).

Theorem 2.1.5 summarizes the condition for the convergence of a Markov Chain.

The total variation norm used there is defined by

||µ|| = sup
A∈E

µ(A) − inf
A∈E

µ(A)

for a bounded signed measure µ on (E, E).

Theorem 2.1.5. Suppose P is π-irreducible and πP = π. Then P is positive recur-

rent and π is the unique invariant distribution of P . If P is also aperiodic, then for

π-almost all x,

||P n(x, ·) − π|| → 0,

with || · || denoting the total variation distance. If P is Harris recurrent, then the

convergence occurs at all x. [73]
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In fact, the assumptions in Theorem 2.1.5 are essentially necessary and sufficient: if

||P n(x, ·)−π|| → 0, for all x, then the chain is π-irreducible, aperiodic, positive Harris

recurrent and has invariant distribution π.

In practice, given a Markov chain, we need to check the following rules to guarantee

the convergence:

Rule 1. Check that π is a proper probability measure.

Rule 2. Check πP = π.

Rule 3. Check that P (·, ·) is irreducible.

Rule 4. Check that P (·, ·) is aperiodic.

Rule 5. Check Harris recurrence (optional).

Rule 6. Convergence diagnostics.

For Rule 6, several methods can be used to test the convergence of a Markov

Chain (see, for example, Gamerman and Lopes [20]). Rule 5 is usually optional, but

in many situations, it can be verified by the following results stated in Theorem 2.1.6

and Corollary 2.1.7.

Theorem 2.1.6. If P is recurrent, then it is Harris recurrent if and only if every

bounded harmonic function is a constant. [73]

Corollary 2.1.7. Suppose P is irreducible and πP = π. If P (x, ·) is absolutely

continuous with respect to π for all x, then P is Harris recurrent. [73]
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2.1.2 Gibbs Sampling

Gibbs sampler constructs a Markov chain with invariant distribution π using condi-

tioning. We give a simple definition for Gibbs sampler as in Gamerman and Lopes

[20]. Let x = (x1, . . . , xd)
T and x ∼ π. Each component of x can be a scalar or a

vector. Assume that all full conditional distributions πi(xi|x−i), i = 1, . . . , d are avail-

able, i.e., samples can be drawn from the conditional distributions. Here x−i denotes

the vector formed by knocking out xi from x, i.e., x−i = (x1, . . . , xi−1, xi+1, . . . , xd).

A Gibbs sampler includes the following steps:

Step 1. Set initial value x(0).

Step 2. Based on current sample x, obtain a new sample x̃ through successive

generations of values:

x̃1 ∼ π1(x1|x2, . . . , xd),

x̃2 ∼ π2(x2|x̃1, x3, . . . , xd),

...

x̃d ∼ πd(xd|x̃1, . . . , x̃d−1);

Step 3. Repeat step 2 until convergence is reached.

Example 2.1.8. Consider E = R
2. x ∈ E can be written as x = (x1, x2)

T , where x1

and x2 represents the two coordinates of x. Assume x ∼ π, with

π(x) ∝ C exp

{
−1

2
(x2

1 + x2
1x

2
2 + x2

2)

}
,
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where C is a constant. From here we can easily find that the conditional density

π1(x1|x2) ∝ c(x2) exp{−1
2
x2

1(x
2
2 + 1)} and π2(x2|x1) ∝ c(x1) exp{−1

2
x2

2(x
2
1 + 1)}, for

c(x1) and c(x2) functions of x1 and x2, respectively. This indicates that x1|x2 ∼

N
(
0, 1

1+x2
2

)
, and x2|x1 ∼ N

(
0, 1

1+x2
1

)
. A Gibbs sampler can thus be constructed as

follows:

Step 1. Initialize x.

Step 2. For current value of x, obtain a new sample x̃ through successive genera-

tions of values

x̃1|x2 ∼ N(0,
1

1 + x2
2

),

x̃2|x̃1 ∼ N(0,
1

1 + x̃2
1

).

Step 3. Repeat step 2 until convergence is reached.

We now check Rule 1 to Rule 5 for the convergence of this Gibbs sampler. We first

find the transition kernel P (x,A) = Pr{x̃ ∈ A|x} with the corresponding transition

density π(x̃|x) = π((x̃1, x̃2)|(x1, x2)) = π2(x̃2|x̃1)π1(x̃1|x2).

Rule 1 Since π(x) ∝ C exp{−1
2
(x2

1 + x2
1x

2
2 + x2

2)} ≤ C exp{−1
2
(x2

1 + x2
2)}, and

C exp{−1
2
(x2

1 + x2
2)} is integrable, hence π is a proper probability measure.
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Rule 2 Check πP = π.

πP (A) =

ˆ

E

P (x,A)π(dx) =

ˆ

E

ˆ

A

π(x̃|x)π(x)dx̃dx

=

¨

E

¨

A

π2(x̃2|x̃1)π1(x̃1|x2)π(x1, x2)dx̃1dx̃2dx1dx2

=

¨

A

[
ˆ

R

π2(x̃2|x̃1)π1(x̃1|x2)

(
ˆ

R

π(x1, x2)dx1

)
dx2

]
dx̃1dx̃2

=

¨

A

[
ˆ

R

π2(x̃2|x̃1)π1(x̃1|x2)π(x2)dx2

]
dx̃1dx̃2

=

¨

A

[
π2(x̃2|x̃1)

(
ˆ

R

π1(x̃1|x2)π(x2)dx2

)]
dx̃1dx̃2

=

¨

A

[π2(x̃2|x̃1)π1(x̃1)] dx̃1dx̃2

=

ˆ

A

π(x̃)dx̃ = π(A),∀A ∈ E .

Rule 3 Check that P (·, ·) is irreducible. It is easy to see that that π(x) is fully

supported on R
2, thus E = R

2. We then have ∀x ∈ E, ∀A ∈ E with π(A) > 0,

P (x,A) = Pr{(x̃ ∈ A|x)} > 0,

hence P (·, ·) is irreducible by definition.

Rule 4 Check that P (·, ·) is aperiodic. From Rule 3, the chain can get anywhere

starting from any x in one-step. Therefore P (·, ·) is aperiodic.

Rule 5 Check Harris recurrent. Since π(x̃|x) = π2(x̃2|x̃1)π1(x̃1|x2) and P (x, ·) is

absolutely continuous with respect to π, Harris recurrent follows from Corollary 2.1.7.

Therefore by Theorem 2.1.5, the Gibbs sampler constructed here converges to an

equilibrium distribution π in total variation, and the convergence occurs for any start-

ing values x ∈ R
2.
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2.1.3 Metropolis Sampling

Assume that π is absolute continuous with respect to µ and let Q be a transition

kernel of the form

Q(x, dy) = q(x, y)µ(dy).

Let E+ = {x : π(x) > 0} and assume that Q(x,E+) = 1 for x 6∈ E+. Also assume

that π is not concentrated on a single point. For a given Xn = x, we propose a

candidate value Y = y for the next point Xn+1 from the distribution Q(x, ·), and

accept it with probability

α(x, y) = min

{
π(y)q(y, x)

π(x)q(x, y)
, 1

}
.

Otherwise, the candidate is rejected and the chain remains at Xn+1 = x.

If we define the off-diagonal density of a Metropolis kernel as

p(x, y) = q(x, y)α(x, y)1{x 6=y},

and set r(x) = 1 −
´

p(x, y)dy, then the Metropolis kernel P can be written as

P (x, dy) = p(x, y)µ(dy) + r(x)δx(dy), (2.1)

where δx denotes a point mass at x. The value r(x) is the probability that the

algorithm remains at x.

Proposition 2.1.9. For the Metropolis kernel defined above, we have

π(x)p(x, y) = π(y)p(y, x), (2.2)

which is called reversibility condition.
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Proof. If x = y, then p(x, y) = 0, both sides equal 0. If x 6= y and π(y)q(y, x) ≥

π(x)q(x, y), we have α(x, y) = 1. Therefore the left hand side(LHS) of Equation (2.2)

is

LHS = π(x)p(x, y) = π(x)q(x, y)α(x, y) = π(x)q(x, y).

The right hand side(RHS) of Equation (2.2) is

RHS = π(y)p(y, x) = π(y)q(y, x)α(y, x) = π(y)q(y, x)
π(x)q(x, y)

π(y)q(y, x)
= π(x)q(x, y).

Therefore LHS=RHS, the equality holds. By symmetry, the case of π(y)q(y, x) <

π(x)q(x, y) is obvious.

Proposition 2.1.10. For the Metropolis kernel defined above, we have πP = π, hence

π is an invariant distribution for P .

Proof. For all A ∈ E , we have P (x,A) =
´

A
p(x, y)µ(dy) + r(x)δx(A) by (2.1) and

πP (A) =

ˆ

P (x,A)µ(dx)

=

ˆ

[
ˆ

A

p(x, y)µ(dy)

]
π(x)µ(dx) +

ˆ

r(x)δx(A)π(x)µ(dx)

=

ˆ

A

[
ˆ

p(x, y)π(x)µ(dx)

]
µ(dy) +

ˆ

A

r(x)π(x)µ(dx)

=

ˆ

A

[
ˆ

p(y, x)π(y)µ(dx)

]
µ(dy) +

ˆ

A

r(x)π(x)µ(dx)

=

ˆ

A

(1 − r(y))π(y)µ(dy) +

ˆ

A

r(x)π(x)µ(dx)

=

ˆ

A

π(y)µ(dy) = π(A).
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For the Metropolis kernel P to be irreducible, it is necessary that Q is irreducible.

But this is not a sufficient condition because irreducibility of P depends on both Q

and π. If P is irreducible and π({x : r(x) > 0}) > 0, then the Metropolis kernel is

aperiodic. [73]

Corollary 2.1.11. Suppose P is a π-irreducible Metropolis kernel. Then P is Harris

recurrent. [73]

The Metropolis sampler is very general in the sense that there exists different

choices for the “proposal” distribution q(x, y). Tierney introduced four types of

chains: random walk chains, independence chains, rejection sampling chains and

grid based chains [73]. One can also combine different sampling algorithms to form a

hybrid algorithm. More advanced algorithms can be found in Liu [40].

2.2 Bayesian Variable Selection

As a type of model selection method, Bayesian variable selection (BVS) has received

much attention in recent years (see, for example, Chipman, George and McCulloch

[16], Clyde and George [17] for literature reviews on this topic). In this section, we

summarize the basic scheme of Bayesian variable selection for normal linear models

based on the work of George and McCulloch ([21],[22]).

Given a dependent variable Y and p predictor variables {X1, . . . , Xp}, a multiple
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linear regression model takes the form

Y = β0 + X1β1 + . . . + Xpβp + ǫ, (2.3)

where ǫ ∼ N(0, σ2). Here p can be large (e.g., larger than the number of observations).

The purpose of variable selection is to find a subset of the p predictors which can

“best” explain the response Y . This often happens in the case when some predictors

in {X1, . . . , Xp} are redundant and a parsimonious model is sought. There are totally

2p choices for such a subset. When p is moderate (e.g., less than 20), one can go

through all the possible choices and determine the best subset based on some selection

criteria such as SSE, adjusted R2, Cp, AIC, BIC, etc. (see, for example, Kutner et

al. [35], Page 353-360). When p is large, however, it becomes unrealistic to compute

the criteria for all possible models. Therefore it becomes necessary to develop some

efficient computational algorithms to search for the best subset. There are some

traditional searching methods such as forward or backward selection (details can be

found in Miller ([45], Page 42-46). From a Bayesian point of view, this problem can

be solved by formulating a hierarchical mixture prior to the regression coefficients,

which is called Bayesian variable selection (BVS).

The BVS method introduces a hyper-parameter τ to the priors of βi, i = 1, . . . , p,

where τ = (τ1, . . . , τp)
T . Each component of τ takes values either 1 or 0, indicating

whether the corresponding regression coefficient is included in the subset. Posterior

inferences of τ then help to decide the best subset of the predictor variables. The

prior distribution of βi is usually set to be a mixture normal distribution controlled
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Figure 2.1: The plot of normal densities with relatively large (1) and small (0.1)
variances.

by τ . For example, the mixture normal prior can be

βi|τi ∼ τiN(0, v2
1i) + (1 − τi)N(0, v2

0i), (2.4)

where v1i and v0i are nonnegative parameters, and v1i is far from zero but v0i is close

to zero, i.e., v1i >> v0i > 0. Usually we set v1i’s and v0i’s to be constant for all

index i. The prior (2.4) is actually a normal distribution with variance either large

or close to zero depending on the value of τi. When τi = 0, βi has a normal prior

with small variance v0i, and since v0i is close to zero, βi can be a priori excluded from

the subset. Figure 2.1 shows the plot of two normal densities, one with relatively

large (1) variance and the other with small (0.1) variance. One could also introduce
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correlations between βi’s by letting β = (β1, . . . , βp)
T and write priors for β as

β|τ ∼ N(0, DτRτDτ ), (2.5)

where Dτ = diag(u1, . . . , up) with ui = τiv1i+(1−τi)v0i, and Rτ is the prior correlation

matrix. τi is usually set to have a hyper-prior of independent Bernoulli(ω). The prior

for β0 can be normal or non-informative (i.e., π(β0) ∝ 1). The prior for σ2 is often

chosen to be the conjugate prior of the normal likelihood, i.e., Inverse-Gamma(d1,d2).

Using Bayes theorem, the posterior distribution corresponding to the above prior

settings can be determined as:

π(τ, β0, β, σ2|y) ∝ π(y|τ, β0, β, σ2)π(β0)π(β|τ)π(τ)π(σ2). (2.6)

It is always possible to integrate out β0, β and σ2 from (2.6) to obtain the marginal

posterior π(τ |y). MCMC algorithms can thus be designed to obtain the posterior

samples of τ based on π(τ |y) or π(τ, β0, β, σ2|y), which will be discussed later in this

section.

As a modification of the mixture normal prior in (2.4), we can let v0i ≡ 0 so the

prior for βi becomes

βi|τi ∼ τiN(0, v2
1i) + (1 − τi)δ0, (2.7)

where δ0 is a point mass at zero. This prior is different from (2.4) in that when τi = 0,

βi follows a degenerate distribution (constant), hence the joint prior π(β|τ) in (2.5)

has singular covariance. In such a setting, we usually replace β by βτ , where βτ is a
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sub-vector of β formed by removing the zero components of β. The prior in (2.5) is

then reduced to

βτ |τ ∼ N(0, D1τR1τD1τ ), (2.8)

With this prior, the posterior distribution can be derived similarly as in (2.6).

The prior correlation Rτ in (2.5) can be chosen to be an identity matrix or a

so called g-prior Rτ ∝ (XT X)−1, where X is a n × p design matrix when there

are n observations. The ith row of X is (Xi1, . . . , Xip). In case of the βτ prior in

(2.8), the g-prior for R1τ takes the form R1τ ∝ (XT
τ Xτ )

−1, where Xτ is formulated by

removing the columns of X with zero coefficients (i.e., columns that the corresponding

τ components are 0).

The MCMC algorithm plays an important role in posterior inference. In case that

one can integrate out β0, β and σ2 from the joint posterior to obtain the marginal

posterior π(τ |y), several algorithms are available to sample τ from π(τ |y), including:

1. Gibbs Sampling. A Gibbs sampling can be used to update τ component-

wisely. For each component τi, compute the posterior odds

θi =
π(τi = 1, τ(i)|y)

π(τi = 0, τ(i)|y)
, (2.9)

where τ(i) = (τ1, . . . , τi−1, τi+1, . . . , τp). Using this ratio, we can compute the

posterior probability of τi = 1 (i.e., θi/(1 + θi)) and sample τi based on this

probability. τi can be updated in either a fixed or random order. It is also

feasible to update components of τ in groups rather than one by one.
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2. Metropolis-Hastings. Metropolis-Hastings is another choice to update τ .

We first generate a candidate sample τ̃ from a transition kernel (a proposal

distribution) f(τ̃ |τ), then update τ by τ̃ with probability

min{π(τ̃ |y)

π(τ |y)

f(τ |τ̃)

f(τ̃ |τ)
, 1}. (2.10)

For convenience, the transition kernel can be chosen to be symmetric so that

the f(τ |τ̃) term and f(τ̃ |τ) term in the proposal ratio in (2.10) are canceled.

For example, the candidate sample τ̃ can be generated by one of the following

operations to form a symmetric transition kernel:

(a) Randomly change one component of τ .

(b) Randomly change d components of τ with a pre-specified probability qd.

(c) With probability φ, randomly change one component of τ ; with probability

1−φ, randomly choose two components with value 0 and 1 and swap them

([9], Page 524).

More adaptive sampling schemes can be found in Nott and Kohn [52]. Note

that the MCMC algorithm will be different if using priors in (2.7) rather than

that in (2.4). When using the point mass prior (2.7) to compute the posterior

density π(τ |y), the dimension of the design matrix X need to be adjusted in

each MCMC iteration according the value of τ , i.e., for each proposed value τ̃ ,

the marginal posterior π(τ̃ |y) need to be computed by plugging in Xτ̃ rather

than X. This may speed up the computation since only part of the data are
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used in most iterations. When using the mixture normal priors in forms of (2.4),

we do not have to adjust for the size of X.

When the parameters β0, β or σ2 can not be integrated out from the joint

posterior, such as in the case of generalized linear models (see, for example,

Nott [53]), we need to adopt more complex MCMC algorithm for posterior

sampling. In such a case, if using point mass prior, the dimension of β varies

when the number of “1” components in τ changes. More advanced algorithms

such as reversible jump MCMC can be applied for better mixing of the posterior

samples.



Chapter 3

A Bayesian Probit Model with

Variable Selection for Functional

Data Classification

3.1 Introduction

In this chapter, we propose a Bayesian variable selection (BVS) model to perform bi-

nary classification based on multiple functional predictors. We use a latent variable to

connect the functional predictors with the binary response. Priors for the coefficient

functions are set to be Gaussian processes which depend on a hyper-parameter that

enables variable selection. An orthonormal basis is used to decompose the covariance

function of the Gaussian process priors and to represent the functional predictors and

34
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the coefficient functions by their basis coefficients. Posterior inference is implemented

by function approximation with truncated orthonormal basis expansion. For poste-

rior sampling, we suggest a Hybrid Gibbs/Metropolis-Hasting sampler. Simulations

show that this model produces accurate variable selection and good classification re-

sults. Application to the EEM measurements of fluorescence spectroscopy data gives

improved classification as compared to several other classification methods.

3.2 The Proposed Model

Suppose we observe n i.i.d. observations, each contains J functions. For i = 1, . . . , n

and j = 1, . . . , J , denote xij(t) as the jth function observed from the ith observation.

We assume xij(t) ∈ L2(Tj) for a compact domain Tj. Let the response yi be a binary

class that the ith observation belongs to. Here yi’s are assumed to be condition-

ally independent given the functional predictors xij(t), j = 1, . . . , J . Similar to the

method used in James [32] as well as Müller and Stadtmüller [51], a generalized func-

tional linear regression model for multiple functional predictors can be constructed

by associating a univariate latent variable zi with yi through

yi =





1 if zi < 0,

0 if zi ≥ 0.

where

zi = β0 +
J∑

j=1

ˆ

Tj

xij(s)βj(s)ds + ǫi, (3.1)
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and ǫi ∼ N(0, 1) determines a probit link between yi and zi. We assume βj(t) ∈ L2(Tj)

for j = 1, . . . , J . Based on the above model setting, standard functional regression

estimation paradigms, such as the EM algorithm in James [32], or the estimating

equation method in Müller & Stadtmüller [51], can be performed to estimate the

intercept β0 and the coefficient functions βj(t)’s. However, these standard estimating

paradigms are designed for cases with J = 1. It is not clear whether they can be ex-

tended to models with multiple functional predictors. Also, when the xij(t)’s contain

redundant information, the efficiency of the model will be reduced. This motivates us

to consider the variable selection method. Due to the infinite dimensionality of func-

tional data, point-wise selection from the predictors xij(t) is not a practical choice.

A simple method is to discretize xij(t) on a finite grid and transform the problem to

a multivariate model, but this ignores the correlation between contiguous points on

the grid. In this paper, we consider variable selection in the orthogonally transformed

domain.
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3.3 Priors

Based on the model proposed in Section 3.2, we construct priors to the regression

coefficients from a functional data perspective. The priors are set to be

β0 ∼ N(0, h2),

βj(t)| τ j ∼ GP (0, γτ j),

τ j
k ∼ Bernoulli(ωj

k), k ∈ N, j = 1, . . . , J.

(3.2)

Here τ j = {τ j
k}∞k=1 is a binary sequence of 1’s and 0’s. Components of τ j are assumed

to be independent across index k and j. GP (0, γτj) represents a Gaussian process

with zero mean and covariance function γτj . The covariance function γτ j can be

decomposed as

γτ j(s, t) =
∞∑

k=1

wj
k

[
τ j
kν2

1 + (1 − τ j
k)ν2

0

]
φj

k(s)φ
j
k(t), (3.3)

where {φj
k}∞k=1 is a complete orthonormal basis of L2(Tj), and {wj

k}∞k=1 is a sequence

of weights such that
∑∞

k=1 wj
k < ∞. We let ν1 >> ν0 > 0, and let ν0 to be close to

zero so that the factor [τ j
kν2

1 + (1 − τ j
k)ν2

0 ] is either ν1 or ν0 according to the binary

value of τ j
k . Note that we treat {wj

k}k and {φj
k}k as prior parameters and will make

specific choice of them. The values for h, ν1, ν0 and ωj
k’s are also pre-specified. For

simplicity, we assume the priors for βj(t) are independent across index j.
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3.4 Posteriors

Based on the model in Section 3.2 and prior settings in Section 3.3, posterior in-

ference can be conducted by finite dimensional approximation. Since {φj
k}∞k=1 is an

orthonormal basis on L2(Tj), we can expand xij(t)’s and βj(t)’s by

xij(t) =
∞∑

k=1

cijkφ
j
k(t), βj(t) =

∞∑

k=1

bjkφ
j
k(t). (3.4)

The truncated version of (3.4) can be used to approximate xij(t) and βj(t) since

∑∞
k=1 c2

ijk < ∞ and
∑∞

k=1 b2
jk < ∞. Note that the orthonormal basis {φj

k}∞k=1 can

be chosen to be a known basis such as a Fourier or wavelet basis. If we assume in

addition that xij(t)’s have zero mean and
´

Tj
E[xij(t)

2]dt < ∞, Mercer’s theorem

and Karhunen-Loève theorem (Ash and Gardner [3]) suggest to take the orthonormal

basis to be the eigenfunctions of the covariance operator K defined by

Kx(t) =

ˆ

x(s)k(s, t)ds, k(s, t) = Cov(x(s), x(t)). (3.5)

In this case, the coefficients {cijk}∞k=1 are called functional principal component (FPC)

scores of xij(t). The FPC method is different with orthonormal expansion using

known basis in that the eigenfunctions need to be estimated. Various methods for

estimating the eigenfunctions can be found in Ramsay and Silverman [60], Hall, Müller

and Wang [28].

Once the orthonormal basis has been chosen or estimated, we can approximate

Equation (3.1) by

zi = β0 +
J∑

j=1

pj∑

k=1

cijkbjk + ǫi, (3.6)
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where pj is the truncation parameter for the jth functional predictor. We thus transfer

the functional regression to a multiple linear regression. For convenience, denote

Ci = (1, ci11, . . . , ci1p1 , . . . , ciJ1, . . . , ciJpJ
)T ,

β = (β0, b11, . . . , b1p1 , . . . , bJ1, . . . , bJpJ
)T ,

Equation (3.6) can be simplified to

zi = Ciβ + ǫi. (3.7)

Let Z = (z1, . . . , zn)T , Y = (y1, . . . , yn)T and X = (C1, . . . , Cn)T , the conditional

density π(Z|β, Y ) is

n∏

i=1

φ(zi − Ciβ)
[
Φ−1(−Ciβ)I{zi<0}∩{yi=1} + (1 − Φ(−Ciβ))−1I{zi≥0}∩{yi=0}

]
, (3.8)

where φ(·) represents a standard normal density with corresponding distribution func-

tion Φ(·), and I{·} is an indicator function. Equation (3.8) shows that the conditional

distribution of Z given β and Y is truncated normal.

Using the truncated orthonormal basis expansion, the priors for βj(t)’s in Equa-

tion (3.2) become

π(β|τ) = N(0, Στ ), (3.9)

where τ = (τ 1
1 , . . . , τ 1

p1
, . . . , τJ

1 , . . . , τJ
pJ

) and

Στ = DτW
1/2RW 1/2Dτ . (3.10)
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Here we have R = I because of the independence assumption between βj(t)’s, and

W = diag(1, w1
1, . . . , w

1
p1

, . . . , wJ
1 , . . . , wJ

pJ
). (3.11)

Finally, Dτ = diag(h, ν11, . . . , ν1p1 , . . . , νJ1, . . . , νJpJ
) with

νjk = τ j
kν1 + (1 − τ j

k)ν0, (3.12)

for k = 1, . . . , pj and j = 1, . . . , J . The diagonal form of Στ makes the components

of β a priori independent. νjk’s in the diagonal of Dτ have mixture normal priors,

which indicate whether the components of β have large or nearly zero variances. Such

a prior was used in George and McCulloch ([21], [22]) for Bayesian variable selection

in multiple linear regression.

The joint posterior distribution can therefore be obtained by multiplying condi-

tional distribution in Equation (3.8) with the priors, i.e.,

π(β, τ, Z|Y ) = π(Z|β, τ, Y )π(β|τ)π(τ) (3.13)

Integrating out β from Equation (3.13) gives the marginal posterior density π(τ, Z|Y ).

Conditional on Z and Y , we have

π(τ |Z, Y ) ∝ |XT X + Σ−1
τ |− 1

2 |Στ |−
1
2 exp

{
1

2
ZT X(XT X + Σ−1

τ )−1XT Z

}
π(τ).(3.14)

Based on Equation (3.8), (3.13) and (3.14), we can design a MCMC algorithm for

posterior inference.
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3.5 Parameter Settings

Note that in Section 3.3, the truncation parameters pj are pre-determined parameters

for function approximation. One could set up priors for each pj and adopt reversible

jump MCMC[26] for posterior sampling. This strategy is reasonable but causes extra

complications for MCMC. Another way of determining pj is through cross-validation,

i.e., maximizing the prediction performance on test set. This method is straight-

forward but only applicable for pj ≡ p. It is also computationally expensive since

it requires training the model on all possible choices of p. In this study, we pro-

pose a simple practical method for determining pj’s by setting an approximation

criterion. For example, if we use FPC analysis, the criterion can be set as f̂(pj) =

∑pj

k=1 λ̂k/
∑K

k=1 λ̂k ≥ c1, for 0 < c1 ≤ 1, 1 ≤ pj ≤ K. Here λ̂k’s are the estimated

eigenvalues, K is the maximum number of non-zero eigenvalues. Note that f̂(pj) rep-

resents the proportion of variability explained by the first pj FPC’s. Empirically we

often choose c1 between 0.99 and 1. In the case of using a known orthonormal basis,

we suggest the criterion to be f̂(pj) = 1 −∑i ||xij(t) − x̂ij(t)||2/
∑

i ||xij(t)||2 ≥ c2,

where x̂j(t) is the estimated function of xj(t) after truncating at pj, and || · || is the

L2 norm. Similarly, the suggested value for c2 is also between 0.99 and 1.

The weights sequences {wj
k}∞k=1 in Equation (3.3) determine the weight matrix

W in (3.10). Here we give a brief discussion on the choices of {wj
k}∞k=1. First we

know that wj
k > 0 and

∑∞
k=1 wj

k < ∞. The main effect of wj
k is to shrink more on

the higher orders of the orthonormal basis {φj
k(t)} toward zero so that the series in
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(3.3) converges. In this paper, we always set 1 = wj
1 > wj

2 > · · · > 0 so that all the

weights are between 0 and 1. Let wj
k = m

(k−1)m2

1 for all k = 1, . . . ,∞ and all j, where

0 < m1 < 1 and m2 is a positive integer. Clearly, smaller value of m1 or larger value

of m2 makes {wj
k}∞k=1 decay to zero faster. The values of {wj

k}∞k=1 are truncated at pj

to form the weight matrix W . We usually take m1 between 0.7 and 1, and m2 to be

1, 2 or 3.

The prior parameters ν1 and ν0 must satisfy ν1 >> ν0 > 0. Usual value for ν1 is

between 10 and 1000, and for ν0 is between 0.0001 and 0.2.

3.6 Markov Chain Monte Carlo

Based on the results derived in Section 3.2 through Section 3.4, we propose the

following MCMC algorithm for posterior sampling:

Step 0: Set up initial values for β, τ and the prior parameters for h, ν1,ν0 and

wj
k’s.

Step 1: Conditional on Y and current values of β, sample Z from the truncated

normal distribution with density (3.8).

Step 2: Conditional on Y and current values of Z, update τ using Metropolis-

Hastings. Based on current τ , a candidate τ c is firstly generated using

the “switch/swap” proposal (see Brown et al. [8]), i.e., with probability

ϕ, randomly swap one 1 term with one 0 term; and with probability 1−ϕ,
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randomly pick one position and switch it. Compute the ratio

rτ =
π(τ c|Z, Y )

π(τ |Z, Y )
,

and update τ = τ c with probability min(1, rτ ).

Step 3: Conditional on Y and current Z, τ , update β from a multivariate normal

distribution:

β|Z, τ, Y ∼ N((XT X + Σ−1
τ )−1XT Z, (XT X + Σ−1

τ )−1)

Repeat Step 1 − 3 until convergence.

This MCMC algorithm is a hybrid Gibbs/Metropolis-Hasting sampling process

since it performs Metropolis-Hasting updates within a large Gibbs sampling iteration.

Note that although τj = 0 indicates that the jth covariate (among the concatenated

basis coefficients of the functional predictors) is not selected, we do not remove this

covariate in the MCMC iteration.

3.7 Simulation Study

Two simulations are conducted to evaluate the performance of the proposed BVS

model on functional data classification. Simulation 1 uses only one functional predic-

tor, i.e., J = 1 in Equation (3.1). For simplicity, the functional predictor is generated

using only 5 orthonormal cosine bases on interval [0, 1]. Simulation 2 considers mul-

tiple functional predictors for each observation, i.e., J = 20 in Equation (3.1). Thus
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the total number of variables to be selected is relatively large. The variable selection

results are discussed and prediction results are compared with several other classifiers.

Simulation 1: Let the sample size n = 1000, we simulate a single functional

predictor for each observation, i.e., J = 1 in Equation (3.1). Functional predictors

xi(t) are generated using the first 5 cosine bases on closed set [0, 1], i.e., φ0(t) =

1, φk(t) =
√

2 cos(kπt), k = 1, . . . , 4. The mean curve is determined by cosine co-

efficients c = (−1.12,−1.82, 7.77, 2.15,−3.25). By adding an independent random

error N(0, 1) to each component of c, we generate the functional predictor for each

observation. For the true coefficient function β(t), we set the first 5 cosine bases

scores as b1 = b3 = b4 = 0, b2 = 5, and b5 = −4, corresponding to the true value of

τ = (0, 1, 0, 0, 1)T . Latent variables zi are generated using Equation (3.1) by numeri-

cal integration. Here the true β0 is set to be −3.5. Binary responses yi are generated

from the sign of zi. We randomly take 800 observations as training set and the rest

as test set. Note that in this simulation, the way of functional data generation is

actually multivariate, in the sense that all the true parameters are pre-defined as the

coefficients of a fixed number of cosine bases. This simplified simulation helps to

verify our proposed model and MCMC algorithm in a straightforward way.

The proposed model is applied to the above simulated data. For convenience of

comparing the estimated regression coefficients with the true on their basis coeffi-

cients, we choose to use cosine basis to approximate the functional predictors. The

criterion in Section 3.5 with c2 = 0.99 gives the truncation parameter p = 5. This
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True MLE BVS

τ β β̂ S.E. β̂ S.E. 95% C.I. ω̂i

2.5% 97.5%
– -3.5 -2.28 1.02 -2.77 0.46 -3.67 -1.88 –
0 0 0.12 0.11 0.00 0.00 0.00 0.00 0.0
1 5 4.41 0.37 4.37 0.39 3.64 5.18 1.0
0 0 0.01 0.12 0.00 0.00 0.00 0.00 0.0
0 0 -0.25 0.12 0.00 0.00 0.00 0.00 0.0
1 -4 -3.51 0.30 -3.44 0.31 -4.09 -2.87 1.0

Table 3.1: Simulation 1: the estimation of β compared with maximum likelihood
estimation(MLE). Note that ωi indicates P{τi = 1}. BVS: The Bayesian variable
selection model proposed in Section 3.2.

model is trained on the training set using the MCMC algorithm stated in Section 3.6,

with ωi ≡ ω = 0.2, R = I, ν1 = 100, and ν0 = 0.001. The weight sequence {wk}∞k

is set by the method stated in Section 3.5 with parameters m1 = 0.9, m2 = 1. The

Markov chain consists of 20000 iterations in total with a 3000 burn-in period. By

averaging the posterior samples of τ , we obtain the marginal posterior probability

P{τi = 1, i = 1, . . . , 5} as (0, 1, 0, 0, 1)T , which indicates that our algorithm has

picked out the correct non-zero basis (second and fifth) scores successfully. Table 3.1

lists the estimation results for β, using the BVS model and the maximum likelihood

estimation method (the GLM with probit-link). From Table 3.1, we see that the

posterior estimation of the coefficient scores is as good as the maximum likelihood es-

timate. The posterior prediction of the coefficient curve β(t) can be easily computed

by conducting inverse cosine transform to the posterior samples of {bk, k = 1, . . . , 5}.

Figure 3.1 shows the posterior mean of the coefficient function and the corresponding
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Figure 3.1: Simulation 1: the posterior estimation of β(t)and the corresponding
simultaneous 95% credibility band compared with the true value of β(t).

simultaneous 95% credibility band, as compared with the true. The simultaneous

credibility band is obtained by finding a constant M , such that 95% of the simulated

posterior functions fall into the interval β̂(t)±Mσ̂(t),∀t, where β̂(t) and σ̂(t) are the

posterior mean and standard deviation of the cofficient functions. From Figure 3.1,

we see that the true coefficient function lies in the 95% credibility band.

Prediction can be done by applying the posterior samples of β to the test set using

Equation (3.6). If treating yi = 1 as diseased and yi = 0 as normal class, the out-

of-sample prediction of the test set provides sensitivity 92.7% and specificity 97.1%

with corresponding threshold 0.526. The resulting misclassification rate is 5% and

the area under ROC curve (AUC) is 0.99. Note that the sensitivity and specificity
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reported here is obtained by maximizing the sum of sensitivity and specificity. For

more information about ROC curves, see Zweig and Campbell [86].

Instead of using cosine basis for dimension reduction, we also tried to use FPC

for orthonormal basis expansion. We use the approximation criterion stated in Sec-

tion 3.5 with c1 = 0.99, and get p = 5. The prior parameters are set to be the

same as in the cosine basis case. After 20000 MCMC iterations with a 5000 burn-in

period, prediction on the test set gives sensitivity of 96.9% and specificity of 91.3%

under threshold 0.282. The corresponding misclassification error is 6% and the area

under ROC curve (AUC) is 0.988. These results shows that using FPC for function

approximation produces as accurate prediction as using cosine basis, although the

data are generated based on a different type of basis.

Simulation 2: In this simulation, we evaluate the performance of the model with

multiple functional predictors. The functional predictors are generated similarly as

in simulation 1 using the first 5 cosine bases, except that now we set J = 20 in

Equation (3.1). Therefore the total number of scores K = J × p = 100. For the

coefficient scores β, we randomly choose 24 out of 100 and set them to be nonzero,

which take values from a uniform distribution with support [−4, 5] (the 0 value is

excluded). We set the intercept β0 = −1.5. Latent variables and binary responses

are generated following the same way as in Simulation 1.

Similar to Simulation 1, we choose cosine basis to approximate the functional

predictors for simplicity. The approximation criterion in Section 3.5 with c2 = 0.99
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Figure 3.2: Simulation 2: marginal posterior estimate of τ as compared with the
true τ . The solid dots represent the true values of τ . The vertical bars indicate the
frequencies of selecting the variables during all iterations (after burn-in).

gives truncation parameter p = 5. We train the proposed BVS model using the

training set based on the transformed cosine basis scores. The model priors are

set to be ωj
k ≡ ω = 0.1, R = I, ν1 = 10 and ν0 = 0.001. The weight sequences

{wj
k}∞k=1 are determined by m1 = 0.9, m2 = 1 for j = 1, . . . , J , as suggested in

Section 3.5. The Markov chain consists of 30000 iterations in total with a burn-in

period of 10000. Figure 3.2 shows that the estimated marginal posterior probability

Pr{τ1 = 1, . . . , τK = 1} as compared with the true τ . From Figure 3.2, we see that

all 24 nonzero components of β are corrected found. The marginal posterior estimate

for τ matches perfectly to the true τ . These results show that, even with fairly large

number of functional predictors J = 20, the proposed model is still able to provide

accurate estimates of τ .

Applying the estimated regression coefficients to the test set for prediction, we
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Figure 3.3: Simulation 2: the ROC curves of different classification models. BVS:
the proposed Bayesian variable selection model. Bayes: the Bayesian probit model
(without variable selection). LDA: Linear Discriminant Analysis. KNN: K-nearest
neighbor. Note that all classifiers are based on first 5 cosine basis scores

obtain a 100% sensitivity and 96.6% specificity under the threshold 0.106. The corre-

sponding misclassification rate is 2%. We then evaluate in Figure 3.3 the prediction

performance by comparing the empirical ROC curve of the proposed model with that

of three other classifiers. All the 4 methods are based on the same function approx-

imation method, i.e., the cosine basis expansion with truncation parameter pj ≡ 5.

Among these methods, the Bayes classifier is a Bayesian probit model with latent

variables. It has the similar structure as our proposed model but does not perform

variable selection. The LDA classifier assumes multivariate normal distribution with

common covariance matrix for both classes, and obtains the discrimination hyper-
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Method AUC Sens Spec Thres MisR

BVS 0.997 100% 96.6% 0.106 2%
Bayes 0.983 95.1% 95.0% 0.329 5%
LDA 0.974 97.5% 85.7% 0.232 9.5%
KNN 0.887 85.2% 79.8% 0.400 18%

Table 3.2: Simulation 2: the prediction results compared with 3 other classifica-
tion methods. AUC: Area under the ROC curve; Sens: sensitivity; Spec: specificity;
Thres: The threshold corresponding the reported sensitivity and specificity; MisR:
misclassification rate. The BVS, Bayes, LDA and KNN are defined same as in Fig-
ure 3.3.

plane by equalizing the posterior densities of the two classes. Details of LDA can be

found in Hastie, Tibshirani and Friedman ([30], Page 84-90). The KNN classifier is

another popular classification method, which assigns category for the points in the

test set by voting from their k closest points in the training set. The number of

neighbors k is determined by a 20 block cross-validation using the training set. The

criterion used in the cross-validation is the sum of sensitivity and specificity. De-

tailed prediction results are reported in Table 3.2. Note that the sensitivities and

specificities listed in Table 3.2 are obtained by maximizing the sums of sensitivities

and specificities on the ROC curves. Both Figure 3.3 and Table 3.2 show that the

proposed variable selection model provides better prediction results.

3.8 Fluorescence Spectroscopy Data Classification

After evaluated by simulation, the proposed BVS model is applied to the fluorescence

spectroscopy data introduced in Section 1.2. In this study, we choose part of the
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clinical data measured by a fixed instrument (called FastEEM2). There are 1013

EEM measurements in this dataset obtained from 521 patients. These measurements

are taken from different sites of the patient cervix and there may exist repeated

measurements at the same site. To reduce possible confounding effects due to the

tissue type, all normal measurements are from squamous tissue. After necessary pre-

processing procedures like background correction, smoothing and registration, the

EEM measurements are split randomly into a training set with 607 measurements and

a test set with 406. The proportions of diseased cases within each set are 0.096 and

0.080, respectively. Both cosine basis and FPC are used to reduce the dimension of

functional predictors. The truncation parameters are determined using approximation

criteria suggested in Section 3.5 with c1 = 0.999 in the FPC case and c2 = 0.99 in

the cosine basis case. The resulting pj’s vary from 5 to 3 using the FPC method,

and from 7 to 4 using cosine basis expansion. To reduce possible bias, the principal

component scores of the test set is computed based on eigenfunctions estimated from

the training set.

The proposed model is applied to the scores obtained from FPC and cosine basis

expansion. For both types of scores, we set the priors as ωj
k ≡ 0.2, ν1 = 100, ν0 =

0.001, R = I with 40000 MCMC iterations and 10000 burn-in period. The weight

sequences {wj
k}k are determined as suggested in Section 3.5 with parameters m1 = 0.9,

m2 = 1. Figure 3.4 shows the marginal posterior probabilities of τi = 1 for all

components of τ in the FPC case. The x-axis represents the FPC scores from a single
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excitation curve, and the y-axis represents the spectroscopy curves. Figure 3.4 shows

that, in the total 60 principal component scores, only 4 have posterior probability

greater than 0.4, and 3 of these scores are the third or higher principal components.

One can also find the joint posterior distribution of τ based on the frequencies of

the τ values visited during MCMC. In this real data study, there are 260 possible

choices for τ in total. It turns out that the frequencies for the visited models are

all very small. For example, in the total of 30000 iterations(after burn-in), the most

frequently visited model has a frequency of 5%. Similar to Simulation 2, we compare

the posterior prediction result of the proposed model to that of three other classifiers

in Table 3.3. Figure 3.5 shows the corresponding ROC curves obtained from the test

set prediction. Both Table 3.3 and Figure 3.5 show that the proposed BVS model

provides a better prediction than the other three classifiers in both cases of function

approximation. FPC method gives 77% sensitivity and 82% specificity with area

under ROC curve 0.84, whereas cosine basis expansion gives higher sensitivity but

lower specificity.

To assess the convergence of the MCMC algorithm, we run multiple chains starting

from different initial values of τ . The initial values of β are chosen by randomly sam-

pling its components from a normal distribution. Figure 3.6 illustrates the marginal

posterior probabilities of τ obtained from 3 different chains with different initial val-

ues. The first chain starts with a τ with every component being assigned to be 1

or 0 randomly with probability 0.5; the second chain starts with a τ of all 1’s; the



53

The FPCs in Order

E
xc

it
a

ti
o

n
 W

a
v

e
le

n
g

th
s

Heat plot of the posterior probablity of τ=1 at each excitation wavelength

 

 

1 2 3 4 5

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.4: Real data application: the posterior probability of τi = 1 for all the
scores obtained using FPC.



54

FPCA Cosine
Method AUC Sens Spec Thres MisR AUC Sens Spec Thres MisR
BVS 0.84 77% 82% 0.13 18% 0.83 87% 72% 0.12 27%
Bayes 0.72 90% 48% 0.02 49% 0.80 90% 67% 0.09 31%
KNN 0.71 60% 84% 0.10 22% 0.73 57 % 88% 0.15 15%
LDA 0.68 77% 54% 0.03 45% 0.75 93% 54% 0.02 44%

Table 3.3: A comparison of four classification methods. FPCA: Using the functional
principal components. Cosine: Using cosine basis. Sens, Spec, MisR and BVS,
KNN, LDA, SVM are defined same as in Table 3.2 and Figure 3.3 The thresholds are
determined by maximizing the sum of sensitivities and specificities on the empirical
ROC curves.

third chains starts with a τ of all 0’s. From Figure 3.6, we see similar patterns on

the marginal posterior probabilities, although there are slight differences at some

components.

3.9 Conclusion

We have proposed a Bayesian variable selection model for binary classification, eval-

uated its performance by simulation and applied it to fluorescence spectroscopy data.

This model uses a probit link to connect the binary responses with the functional

predictors, and conducts variable selection by introducing a binary sequence to the

Gaussian process prior of the coefficient function. The posterior inference is per-

formed by function approximation using orthonormal basis. Compared with several

other classifiers, the proposed model shows better prediction results in both simula-

tion studies and real data application.
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Chapter 4

A Functional Generalized Linear

Model with Functional Predictor

Selection

4.1 Introduction

This chapter continues the study of binary classification with multiple functional

predictors, with a particular emphasis on selecting functional predictors. This study

is motivated by such a fact: when multiple functional predictors are involved in

classification, some functions usually play more important role while others produce

mainly redundant information. Selecting a subset of the functions helps to reduce

the cost of data collection for future observations. For this purpose, we propose a

57
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penalized functional generalized linear model, and reduce this model through FPC

analysis to a multivariate regression with a grouped Lasso penalty. The grouped

Lasso penalty makes the selection of functional predictors feasible.

4.2 The Proposed Model

Following the notation in Chapter 3, we consider n i.i.d. observations, each obser-

vation contains J functions. For i = 1, . . . , n and j = 1, . . . , J , let xij(t) be the

jth function observed from the ith observation. Besides xij(t), we also assume a

non-functional vector si associated with each observation. Let binary variables yi

be the responses observed. Our functional generalized linear model is defined as

ρi = Pr (yi = 1|si, xij(t), j = 1, . . . , J), and

ρi = g−1(ηi), (4.1)

ηi = α0 + sT
i α +

J∑

j=1

ˆ

Tj

xij(t)βj(t)dt, (4.2)

where Tj is the domain of xij(t), α0 is a univariate intercept, α is a vector of coefficients

for the non-functional predictors, and βj(t)’s are the functional regression coefficients.

Here the link function g(·) is a one-to-one continuous function. The selection of

functional predictors is based on the following constraint on the functional regression

coefficients:

J∑

j=1

||βj||L2 < m, (4.3)
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where ||f ||L2 = (
´

f 2(t)dt)1/2, m is a pre-defined constant. Note that (4.3) is a

combined constraint of L2 norm and l1 norm. This is an extension of the group-wise

variable selection in multivariate setting proposed by Yuan and Lin [82]. Because of

the properties of this combined constraint, we expect βj ≡ 0 for some j, depending

on the shrinkage factor m.

To solve the regression coefficients from the above proposed model, we apply

functional approximation using orthonormal basis expansion as done in Chapter 3.

The functional predictor xij(t) is expanded by an orthonormal basis {φj
k}∞k=1 (which

can be the estimated eigenfunctions if using FPC analysis) as

xij(t) =
∞∑

k=1

cijkφ
j
k(t). (4.4)

We then use a truncated version of (4.4) to approximate xij(t). Note that if using

FPC method, the functional predictors xij(t) should be centered at their sample mean

to satisfy the zero mean assumption of the FPC analysis, and the functions from the

test set should be centered using the mean estimated from the training set. The same

orthonormal basis is used to expand βj(t):

βj(t) =
∞∑

k=1

bjkφ
j
k(t) (4.5)

Once the coefficients for orthonormal basis or the FPC scores have been estimated,

we can approximate equation (4.2) by

ηi = α0 + sT
i α +

J∑

j=1

pj∑

k=1

cijkbjk, (4.6)
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where pj is the truncation parameter for the jth functional predictor, which can be

determined by approximation criterion stated in Section 3.5. The constraint condition

(4.3) is then approximated by

J∑

j=1

||bj||2 < m (4.7)

where bj = (bj1, . . . , bjpj
) and || · ||2 stands for the Euclidean norm. A regression

with constraint in form of (4.7) is called “grouped Lasso” by Yuan and line [82].

Functional predictor selection can thus be performed through selecting variables in

(4.6) under this constraint, i.e., if one curve xj(t) is selected, then the coefficients

bjk, k = 1, . . . , pj, will all be non-zero.

The grouped Lasso method originates from the Lasso (Least Absolute Shrink-

age and Selection Operator), which was first proposed by Tibshirani[72] for model

selection in linear regression. The basic idea of Lasso is to find a subset of the predic-

tors with non-zero coefficients by applying a l1 constraint to the regression coefficients

based on the ordinary least square estimation. Yuan and Lin [82] extended the regular

Lasso to the case where the predictors can be grouped, such as multi-factor ANOVA.

They combine the l1 and l2 constraints so that the resulting model selects variables

at the group level and is invariant under group-wise orthogonal transformation. To

solve our problem based on the approximated model (4.6) and (4.7), we borrow the

algorithm proposed by Meier et al. [43], where they extended the group-wise lasso re-

gression of Yuan and Lin [82] to a logistic regression setup. Suppose the link function
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in (4.1) is a logit link, i.e.,

log(
ρi

1 − ρi

) = ηi, (4.8)

the estimate can be obtained by minimizing the convex function

Qλ(θ) = −l(θ) + λ

J∑

j=1

s(pj)||bj||2, (4.9)

where θ = {α0, α, bj, j = 1, . . . , J}, and l(·) is the log-likelihood function

l(θ) =
n∑

i=1

{yiηi − log(1 + exp(ηi))}. (4.10)

Here s(pj) is a rescaling parameter which adjusts for the penalty according to the

dimensionality of bj, and is usually set to be
√

pj; λ > 0 is a tuning parameter

controlling the amount of penalty. Note that in the model of Meier et al. [43], only one

term, the intercept term, is unpenalized. However, in our proposed model, in addition

to the intercept α0, we also allow the coefficients of nonfunctional predictors, α, to

be unpenalized. Meier et al. stated the attainability of the minimum and provided

a proof. Actually, the attainability holds only when some conditions are satisfied.

Here we provide a general sufficient condition under which the minimum of (4.9) is

attained.

Proposition 4.2.1. Suppose that 0 <
∑n

i=1 yi < n, λ > 0, s(pj) > 0,∀j, and the

design matrix

X =




1 zT
1 c111 . . . c11p1 . . . . . . c1J1 . . . c1JpJ

...

1 zT
n cn11 . . . cn1p1 . . . . . . cnJ1 . . . cnJpJ



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is a n by m matrix of rank m, n ≥ m. If the maximum likelihood estimator for the

logistic regression (with log-likelihood in the form of Equation(4.10) exists, then (4.9)

has an unique minimizer θ∗.

The proof of Proposition 4.2.1 is in Appendix B. Meier et al. [43] proposed a Block

Coordinate Gradient Descent algorithm to solve the group lasso logistic regression and

provided a R package called grplasso. We will use this package to perform functional

predictor selection based on the approximated model in Equations (4.6) and (4.7).

The initialization of the algorithm is the same as in grplasso.

4.3 Simulation Study

We use simulation to verify the performance of the proposed method in classification

problems with multiple functional predictors. We generate n = 1000 i.i.d. obser-

vations, each contains one non-functional predictor and three functional predictors.

The non-functional predictor is generated from the Uniform[0, 1] distribution, and

the three functional predictors are constructed through cosine basis expansion using

the first 4 bases functions φ0(t) = 1, φk(t) =
√

2 cos(kπt), k = 1, . . . , 3 on the do-

main [0, 1]. The cosine basis coefficients of each functional predictor are generated

independently from a normal distribution with some fixed mean and variance 0.5.

We set the coefficient functions for the first and the third functional predictors to

be zero and set the coefficient function for the second to be non-zero. Figure 4.1

shows the plot of both the non-functional predictor and the functional predictors for
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Figure 4.1: Data plot of both non-functional predictors and functional predictors for
the first 50 observations used in simulation.

the first 50 observations. The binary responses yi are generated by sampling from

a Bernoulli distribution with success probability ρi = (1 + exp(−ηi))
−1, where ηi is

computed from Equation (4.2) using numerical integration. The simulated yi’s are

well balanced, with 57.3% in the 1 class. We then randomly split the data into a

training set of size 800 and a test set of size 200.

Now we apply the proposed model to the simulated data for classification. In

the function approximation step, one can choose an orthonormal basis different from

the one in data generation. We have tried both functional principal components and

cosine basis, and obtained very similar curve selection and prediction results.



64

0 20 40 60 80 100 120

0
1

2
3

4

Coefficient Estimates v.s. λ

λ

E
st

im
at

ed
 C

oe
ffi

ci
en

ts
 o

r 
T

he
ir 

N
or

m
s α̂0

α̂
||β̂1||
||β̂2||
||β̂3||

Figure 4.2: Estimated paths of coefficient vector at different λ values

Using function approximation with cosine basis expansion and the approximation

criterion stated in Section 3.5 with c2 = 0.99, we obtain the truncation parameter

pj ≡ 4. The group-wise Lasso regression algorithm of Meier et al.[43] is then applied

to the reduced scores. Figure 4.2 shows the estimation for the regression coefficients

as a function of λ. Note that for the estimated coefficient function β̂j, we plot their L2

norm, i.e., ||β̂j|| =
√
´

Tj
β̂j(t)2dt, where the function β̂j are obtained by the inverse

transformation of the estimated coefficients b̂j. From Figure 4.2, we see that for a

wide range of λ, 15.7 < λ < 115, the model correctly picks out the non-zero coefficient

function β̂2. We also plot β̂2(t) under 6 selected λ’s in Figure 4.3 to compare with

the true β2(t). Table 4.1 shows the estimated coefficients (in the form of cosine
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basis scores b̂j) compared with the true values under the 6 λ’s. From Table 4.1,

we see that as the penalty parameter λ increases, the estimated coefficients shrink

toward 0; when λ = 0, the estimates are equal to the maximum likelihood estimates,

in which case all the coefficients are nonzero; when λ varies from 22.4 to 89.6, the

coefficients of the first and the third curve are exactly 0, and the coefficient of the

second is nonzero. For λ > 14.1, almost all the estimates are closer to 0 than their true

values. We believe that these shrinkage effects are caused by the continuous-shrinkage

property of Ridge and Lasso penalty (see Tibshirani [72]). As a side note, it has been

suggested that there may be large bias in the estimators related to the inconsistency

of the original Lasso under certain conditions, i.e., that the Lasso does not satisfy

the “oracle properties” (Fan and Li[18], Zhao and Yu [83]). Some modifications have

been proposed to overcome the drawbacks of Lasso and make the estimators satisfy

the oracle properties(see Zou [85]). In this study, we only focus on the functional

predictor selection, more research can to be done on the consistency of the grouped-

Lasso regression under the functional data setup.

We plug the estimated coefficient function β̂j(t), j = 1, 2, 3 into the test set using

(4.2) to perform prediction. For each observation, the estimated success probability

p̂i is computed, from which we plot a ROC curve for each λ. The optimal classifica-

tion point is chosen from each ROC curve to maximizes the sum of sensitivity and

specificity. Figure 4.4 shows the misclassification rate at the optimal point and the

corresponding area under the ROC curves at different values of λ. From Figure 4.4,
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Estimated coefficients at different λ values
Coef True Values λ=118 λ=89.6 λ=22.4 λ=14.1 λ=5.3 λ=0
α0 0.5 0.3 0.3 0.39 0.42 0.46 0.5
α 1 0.63 0.64 0.82 0.87 0.97 1.06
b11 0 0 0 0 0 0.03 0.15
b12 0 0 0 0 0 -0.04 -0.17
b13 0 0 0 0 0 0.04 0.18
b14 0 0 0 0 0 0 -0.01
b21 1 0 0.13 0.58 0.67 0.79 0.9
b22 2 0 0.31 1.43 1.67 2.01 2.29
b23 -3 0 -0.42 -1.92 -2.24 -2.66 -3.02
b24 -1 0 -0.18 -0.84 -0.99 -1.21 -1.41
b31 0 0 0 0 0 0.02 0.03
b32 0 0 0 0 0.01 0.07 0.13
b33 0 0 0 0 0.04 0.34 0.56
b34 0 0 0 0 0.01 0.09 0.14

Table 4.1: The estimated coefficient values compared with the true values at different
λ’s

we find the “best” prediction results with sensitivity(93%), specificity(73%) and an

fairly large area under ROC curve (0.88) when λ is around 22.4, and the resulting

misclassification rate is 16%.

Since in practice the true basis is unknown, we also use FPC for dimension reduc-

tion and compare the results with those from cosine basis. For all the 3 functional

predictors, the approximation criterion stated in Section 3.5 with c1 = 0.99 gives

pj ≡ 4. Actually, the first 4 principal components take into account 100% of the

variability in the training data. Based on the 4 principal components for each curve,

we obtain the regression coefficient estimates very similar to those in Figure 4.2, ex-

cept that the scales of the cofficient norms ||β̂j|| are different. The prediction results

are also very close to those in Figure 4.4. FPC gives the best 93% sensitivity, 73%
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Figure 4.4: Prediction results at different λ values.

specificity and 0.88 area under ROC curve under λ = 22.4, with a resulting misclassi-

fication rate of 16%. Therefore, the FPC method produces exactly the same optimal

prediction for the test set as the method of using cosine basis, although they perform

dimension reduction in a different way.

4.4 Real Data Application

We apply the proposed model to part of the fluorescence data introduced in Sec-

tion 1.2, which is measured using a fixed instrument (called FastEEM3) at a fixed

clinic (British Columbia Cancer Agency, Vancouver, CA). There are 724 EEM mea-

surements made on 311 patients in this dataset. Each measurement contains 16

spectral curves. The measurements are from different sites of the cervix, and there

may exist repeated measurements for the same site. We split the data into a training

set of size 399 and a test set of size 325, with the proportions of diseased cases 0.21
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and 0.20, respectively. Two non-functional covariates are considered in this study.

The first one is the colposcopic tissue type of the measurements which is obtained

prior to the fluorescence spectroscopy measurements. There are two types of colpo-

scopic tissue – squamous and columnar, which makes this covariate a binary variable.

The second one is the menopausal status of patients, which can be categorized into

three levels: pre-, peri- and post-menopause. We use FPC to approximate the func-

tional predictors with the approximation criterion c1 = 0.998. The resulting pj’s vary

between 2 and 3, with
∑

j pj = 41. To reduce possible bias, the test set scores (the

scores of orthonormal basis) are computed based on information from the training set

only. For example, the eigenfunctions used for computing the FPC scores of the test

set are estimated from the training set.

The group lasso logistic regression algorithm is used to estimate the regression

coefficients as λ decreases from 8.5 to 0. Due to the large number of functional

predictors, the plot of coefficient estimates is hard to visualize. In Figure 4.5, we

summarize the excitation curves (functional predictors) selected at different λ values.

The x-axis represents the functional predictors indexed by excitation wavelengths.

The y-axis represents the λ values. The black spot indicates that the estimated

regression coefficient at the given excitation wavelength is non-zero for the given λ

value, therefore the corresponding functional predictor is selected. For example, we

find in Figure 4.5 that when λ = 7.186, the curves at excitation wavelengths 360,

410 and 420 are selected. When λ = 0, there is no penalty, hence all the curves are
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Figure 4.5: The selected functional predictors (fluorescence spectral curves denoted
by excitation wavelengths) at different λ values.

selected. As λ gets larger, this model puts more penalty on the functional regression

coefficients, therefore selects fewer curves. At each given λ value, we can get a set

of estimated coefficients, which can be used to do prediction on the test set. We

thus determine λ by comparing their prediction performance on the test set. Due

to the fact that the total proportion of diseased cases is small, the misclassification

rate is not a good criterion for evaluating the prediction performance (see [84], page

22 for details). In order to reduce the risk of false negatives, we wish to keep a

high sensitivity. It turns out that in such rare-disease diagnosis problems, using

the criterion that the sum of sensitivity and specificity is maximized will help to

remain a high enough sensitivity. Hence for each fixed λ, we pick a point from the
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Figure 4.6: Prediction results at different λ values.

empirical ROC curve such that the sum of the sensitivity and specificity is maximized.

Figure 4.6 shows the area under ROC curve and the optimal sum of the sensitivity

and specificity at different values of λ. When λ = 2.209, the sum reaches its maximum

1.43, with sensitivity 86% and specificity 57%. The corresponding area under ROC

curve is 0.75, and the misclassification rate is 37%. As shown in Figure 4.5, when

λ = 2.209, there are six functional predictors selected at excitations 340, 360, 400, 410,

420 and 480 nm. These selected excitation wavelengths can be used in the future for

building more cost-effective devices. In Table 4.2, we compare the prediction results

using the proposed model at λ = 2.209 with the results from 3 other classification

methods. The corresponding empirical ROC curves are plotted in Figure 4.7. Note

that the parameter k used in the k-nearest neighbor method is determined by a 15-

fold cross validation based on the training set. Both Table 4.2 and Figure 4.7 show

that the 4 classification methods provide similar prediction results on the test set,
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Method Auc MisR Sens Speci Thresh Sum
FGLM(λ = 2.209) 0.75 37% 86% 57% 0.16 1.43

Logistic 0.72 43% 88% 50% 0.12 1.37
KNN 0.73 33% 78% 64% 0.23 1.42
LDA 0.74 40% 84% 54% 0.19 1.38

Table 4.2: The classification results using 4 different methods. Auc: Area under ROC
curve. MisR: Misclassification rate. Sens: Sensitivity. Speci: Specificity. Thresh:
The threshold used for sensitivity and specificity. Sum: The sum of sensitivity and
specificity. FGLM: The proposed model at λ = 2.209. Logistic: logistic regression.
KNN: k-nearest neighbor. LDA: linear discriminant analysis.

in the sense that their AUC’s are all at the 0.70 level. Comparing with the other 3

methods, our proposed model (denoted as (FGLM)) does not improve the AUC too

much. However, since the main purpose of this model is functional predictor selection

rather than classification, we have gained benefits by doing inferences on functional

predictor selection without losing classification power.

4.5 Discussion

We have proposed a functional logistic regression model to perform classification and

functional predictor selection. Using the grouped Lasso penalty, the proposed model

gives information on which functional predictor will be selected if we are willing to

use a subset of the functional predictors for classification. For example, under penalty

λ = 2.209, the best six functional predictors selected in our real data application are

curves at excitation wavelengths 340, 360, 400, 410, 420 and 480nm. The selected

functional predictors can be further used by different classifiers for new measurements.

In our proposed model, the tuning parameter λ is important for prediction. In
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Meier et al. [43] and in our study in this chapter, a test set is used to choose λ with the

best prediction performance. However, in some cases there are only a small number

of observations available and splitting out a test set is not possible. In such cases, we

can adopt some model selection criteria such as AIC, BIC or practical Cp. AIC tends

to select a model with optimal prediction, whereas BIC tends to identify the true

sparse model if the true model is included in the candidate set (see Yang[77]). In the

grouped Lasso linear regression model, Yuan and Lin [82] propose an approximation

to the degree of freedom and use a Cp criterion to select the tuning parameter λ. It

remains an an open question whether this criterion can be extended to the logistic

regression case for selecting λ.

There are several aspects need to be studied in the future. First, it is necessary

to investigate the consistency properties of the estimated coefficient function βj(t),

such as the oracle property. Second, in the group Lasso algorithm, Meier et al. [43]

propose a way to find the range of the tuning parameter λ, and λ can only vary on this

pre-specified grids within this range. This method, although fast, makes it difficult

to find the precise λ value that is optimal for prediction purpose. Efficient algorithms

for searching for λ are necessary especially when functional data are involved.



Chapter 5

A Bayesian Hierarchical Model for

Classification with Selection of

Functional Predictors

The penalized functional generalized linear model proposed in Chapter 4 provides

inferences on selecting functional predictors. However, in our real data application,

there is another issue that is not considered by this model, the random batch effects.

In order to perform functional predictor selection and take the random batch effects

into consideration, in this chapter we extend the Bayesian Probit Model in Chapter 3

to a Bayesian hierarchical model with functional predictor selection (BHFPS). The

Bayesian hierarchical structure takes into account the random batch effects, and the

functional predictor selection is implemented through a block-wise variable selection

75
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method. Fixed effects or predictors in non-functional form are also included in this

model. As we have done in previous chapters, the dimension of the functional data

is reduced through functional principal component analysis or orthonormal basis ex-

pansion. We use a hybrid Metropolis-Hastings/Gibbs sampler for posterior sampling

and apply an Evolutionary Monte Carlo (EMC) algorithm to improve the mixing.

Simulation and real data application show that the proposed BHFPS model provides

accurate selection of functional predictors as well as good classification.

5.1 Motivation

In practical problems of functional data classification, there are often practical issues

that are handled by the models proposed in Chapter 3 and Chapter 4. One of them

is the presence of systematic effects which may be significant enough to bias classi-

fication, such as the artificial differences caused by measuring with different devices.

In Example 5.1.1, we use a toy example to show how the device difference misleads

the classification in an unbalanced design. A similar issue is addressed in Baggerly et

al. (2004).

Example 5.1.1. The following table lists the counts of the objects measured by two

devices for a binary classification problem. If we use the device difference to do

prediction, for example, we classify all the objects measured by device one to class

one, the misclassification rate is (5 + 50)/365 = 15%, which seems quite good but is

obviously useless since the device difference is purely artificial. Unfortunately, most
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classification algorithms can hardly recognize the sources of variation and may end up

with discriminating the objects based on the device difference. We call the variations

caused by device or other experimental difference as “batch effects”.

True class Device one Device two
Class one 300 50
Class two 5 10

In our application of fluorescence spectroscopy data introduced in Section 1.2,

several factors that are brought in by the experimental design need to be considered.

First, the data are obtained using two instruments with four optical probes located

at three clinics. A preliminary study shows that there exists significant differences

among the data from different device-clinic combinations, which puts the classifica-

tion at risk since the diseased cases are rare and distributed inhomogeneously across

these combinations, like the example shown in Example 5.1.1. Second, in addition to

device-clinic differences, it is believed that other factors, such as the tissue type of

the measurement site and the patients’ menopausal status, may confound with the

fluorescence spectroscopy information in the diagnosis. These factor effects are shown

by box-plots in Figure 5.1.

This motivates us to propose a Bayesian hierarchical model with selection of func-

tional predictors for complex functional data classification problems, where multiple

functional predictors are influenced by random batch effects and fixed effects.
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Figure 5.1: The box-plot of the first functional principle component scores of one
spectral curve (measured at excitation 340 nm) versus six device-clinic combinations
(left), two tissue types (middle) and three menopausal states (right). Systematic
differences across different levels of these factors can be seen obviously. Note that
here we only used observations from the normal class, which excludes the possibility
that the differences are caused by unbalanced proportions of diseased cases in each
level of the factors.

5.2 Bayesian Hierarchical Model with Selection of

Functional Predictors

5.2.1 The Proposed Model

Suppose that we obtain functional observations from L exchangeable batches, in which

the lth batch contains nl observations and each observation contains J functions. For

l = 1, . . . , L, i = 1, . . . , nl and j = 1, . . . , J , let xl
ij(t) be the jth function observed

from the ith observation in batch l, which takes values in L2[Tj], with Tj the compact

domain of xl
ij(t). In addition to the functional observations, there are also non-

functional observations sl
i, which is assumed to be a vector of length q. We treat the
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observations {sl
i, x

l
ij(t), j = 1, . . . , J} as predictors and assume the binary responses

yl
i to be conditionally independent given the predictors. Similarly as in model (3.1)

in Chapter 3, we introduce univariate latent variables zl
i which link the responses yl

i

to the predictors as follows:

yl
i =





1 if zl
i < 0,

0 if zl
i ≥ 0.

zl
i = (sl

i)
T α +

J∑

j=1

ˆ

Tj

xl
ij(t)β

l
j(t)dt + ǫl

i. (5.1)

Here we set the first component of sl
i to be 1 to include the intercept term. For

all i and l, we assume ǫl
i to be i.i.d. with distribution N(0, 1), and assume that

βl
j(t) ∈ L2[Tj] for all j. See Albert and Chib [2] for the use of latent variables in the

analysis of binary response data.

In many cases, some functional predictors do not contribute to the the classifica-

tion, and selecting a subset of them may actually improve the classification accuracy.

In our application of fluorescence spectroscopy data, there are also economic reasons

for using a subset of the J functional predictors. To this end, we introduce a hyper-

parameter τ to the priors of βl
j(t), where τ = (τ1, . . . , τJ) and each component takes

value either 1 or 0, indicating whether or not the corresponding functional predictor

is selected. Note that this τ parameter is different from the τ used in the model of

Chapter 3 in that each component determines whether the whole functional predictor

is selected or not, as we will show in the following text. The proposed priors for α
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and βl
j(t) are:

α ∼ N(0, σ2
1Iq),

βl
j(t) | β0

j (t), τj, σ
2
b ∼ GP (β0

j , σ
2
bγτj

),

β0
j (t) | τj ∼ GP (0, σ2

0γτj
),

τj | ωj ∼ Bernoulli(ωj),

σ2
b | d1, d2 ∼ Inv-gamma(d1, d2),

(5.2)

where σ2
1, σ2

0, d1, d2, ωj are pre-specified prior parameters. GP (µ, γ) represents a

Gaussian process with mean µ(t) and covariance function γ(s, t). We let γτj
depend

on τj by

γτj
(s, t) =

[
ν2

1τj + ν2
0(1 − τj)

] ∞∑

k=1

wj
kφ

j
k(s)φ

j
k(t), (5.3)

where {φj
k}∞k=1 is a complete orthonormal basis of L2[Tj]. Note that the infinite sum

in Equation (5.3) is a perfectly general form for a covariance function; it is simply

the spectral representation of a covariance function (Ash and Gardner [3]). We will

treat {φj
k}∞k=1 and {wj

k}∞k=1 as prior parameters and make specific choices of them. In

Equation (5.3), we let ν1 >> ν0 > 0 and set ν0 to be close to 0. Under this setting,

both βl
j(t) and β0

j (t) have covariance functions close to 0 when τj = 0 (i.e., the jth

functional predictor is not selected), and have relatively large variances when τj = 1

(i.e., the jth functional predictor is selected). This type of prior is motivated by

George and McCulloch ([21], [22]) where they use mixture-normal priors for variable

selection. The wj
k’s in Equation (5.3) are pre-specified positive weight parameters

subject to
∑∞

k=1 wj
k < ∞ for all j’s. We determine wj

k using the way suggested
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in Section 3.5 in Chapter 3. For simplicity, we assume that the priors of βl
j(t) are

independent for all j and l, and priors of τj are independent for all j. In order to

do practical posterior inference, we construct finite dimensional approximations to

the functional predictors and coefficients. This is described in detail in Section 5.2.2

below.

5.2.2 The Posterior Inference

From Equation (5.1) and the standard normal assumption of ǫl
i, it is easy to see that

the conditional distribution of zl
i given yl

i, α and βl
j(t) is a truncated normal:

zl
i|yl

i, α, βl
j(t) ∼ TN(µz, 1){I{zl

i<0}I{yl
i=1} + I{zl

i≥0}I{yl
i=0}}, (5.4)

where µz = (sl
i)

T α +
∑J

j=1

´

Tj
xl

ij(t)β
l
j(t)dt. Since {φj

k}∞k=1 is a complete orthonormal

basis of L2[Tj], similar to (3.4) in Chapter 3, we can expand xl
ij(t) and βl

j(t) by

xl
ij(t) =

∞∑

k=1

cl
ijkφ

j
k(t), βl

j(t) =
∞∑

k=1

bl
jkφ

j
k(t), (5.5)

and use the truncated version of (5.5) to approximate them. If assuming that xl
ij(t)

has zero mean and
´

Tj
E[xl

ij(t)
2]dt < ∞, we can estimate eigenfunctions using func-

tional principal component analysis and treat them as the orthonormal basis. The

resulting coefficients {cl
ijk}∞k=1 are the functional principal component (FPC) scores

of xl
ij(t). These steps are similar to what we have done in Section 3.4 of Chapter 3.

Based on the estimated orthonormal basis coefficients or the FPC scores, we can
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reduce (5.1) by applying the truncated approximations in (5.5), which gives

zl
i = (sl

i)
T α +

J∑

j=1

pj∑

k=1

cl
ijkb

l
jk + ǫl

i, (5.6)

where pj is the truncation parameter for the jth functional predictor. We propose

to determine pj’s by setting a function approximation criterion as suggested in Sec-

tion 3.5. The notation of Equation (5.6) can be simplified by concatenating coeffi-

cients of the J functions to make one vector bl. The simplified form of Equation (5.6)

is:

Zl = Slα + Clbl + ǫl, (5.7)

where Zl = (zl
1, . . . , z

l
nl

)T and ǫl = (ǫl
1, . . . , ǫ

l
nl

)T . Here Sl is a matrix of size nl × q

with the ith row equals (sl
i)

T , and Cl is a matrix of size nl × p (p =
∑J

j=1 pj) with

the ith row equals

(cl
i11, . . . , c

l
i1p1

, cl
i21, . . . , c

l
i2p2

, . . . , cl
iJ1, . . . , c

l
iJpJ

)T ,

i = 1, . . . , nl. Similarly, bl = (bl
11, . . . , b

l
1p1

, bl
21, . . . , b

l
2p2

, . . . , bl
J1, . . . , b

l
JpJ

)T . Based on

(5.7), the conditional distribution of the latent variables in (5.4) becomes

Zl|α, bl, Yl ∼ TN(Slα + Clbl, Inl
)

nl∏

i=1

(I{zl
i<0}I{yl

i=1} + I{zl
i≥0}I{yl

i=0}), (5.8)

where Yl = (yl
1, . . . , y

l
nl

). The truncated orthonormal basis expansion or FPC anal-

ysis also reduces the Gaussian process priors for βl
j(t) and β0

j (t) to the following

multivariate normal priors

bl|b0, σ
2
b , τ ∼ N(b0, σ

2
bΣτ ),

b0|τ ∼ N(0, σ2
0Στ ),

(5.9)
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where Στ = DτW
1/2RW 1/2Dτ . Here R is the prior correlation matrix of bl and b0.

By the assumption in Section 5.2.1 that βl
j(t)’s are independent for all j’s, R = Ip, an

identity matrix. W is also a diagonal matrix of size p, with positive diagonal compo-

nents (w1
1, . . . , w

1
p1

, . . . , wJ
1 , . . . , wJ

pJ
). In other words, the diagonal of W concatenates

the first pj components of the weight sequence {wj
k}∞k=1,j = 1, . . . , J . Dτ is another

diagonal matrix with diagonal components

(u1
1, . . . , u

1
p1

, . . . , uJ
1 , . . . , uJ

pJ
),

where uj
k = ν1τj + ν0(1 − τj), for all k = 1, . . . , pj, j = 1, . . . , J . Note that uj

k does

not depends on k.

With the conditional distribution (5.8), the priors for α, τ and σ2
b in (5.2), and

the reduced multivariate priors for bl and b0 in (5.9), we get the joint conditional

posterior distribution of α, bl’s, b0, σ2
b , τ given Zl’s and Yl’s by

π(α, b1, . . . , bL, b0, σ
2
b , τ |Zl, Yl, l = 1, . . . , L)

∝
[∏

l

π(Zl|α, bl, b0, σ
2
b , τ, Yl)π(bl|b0, σ

2
b , τ)

]
π(b0|τ)π(α)π(τ)π(σ2

b ).

(5.10)

The parameters α, bl’s and b0 can all be integrated out sequentially from (5.10), which

gives the marginal conditional posterior density

π(σ2
b , τ |Zl, Yl, l = 1, . . . , L). (5.11)

See Appendix A for details of the integration. Based on (5.8), (5.10) and (5.11),

we design MCMC algorithms to obtain posterior samples of the parameters. The
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posterior samples of bl’s can then be used to estimate βl
j(t)’s. For new observations,

we use the estimated βl
j(t)’s and the posterior samples of α for prediction.

5.3 Markov Chain Monte Carlo

Based on the model constructed in Section 5.2, we propose two MCMC algorithms for

posterior sampling. The first one is a hybrid Metropolis-Hastings/Gibbs sampler, and

the second one is a modified version of algorithm 1 which uses the EMC algorithm to

improve the mixing when the number of functional predictors is relatively large.

5.3.1 Algorithm 1

(A Hybrid Metropolis-Hastings/Gibbs sampler)

Step 0. Set initial values for bl’s, α, τ and σ2
b .

Step 1. For l = 1, . . . , L, conditional on Yl, and current values of bl and α, update

Zl from the truncated normal distribution described in Equation (5.8) of Sec-

tion 5.2.2.

Step 2. Update σ2
b based on π(σ2

b |τ, Zl, Yl, l = 1, . . . , L). Sample a proposal σ̃2
b by

log σ̃2
b = log σ2

b + ǫ, with ǫ ∼ N(0, δ2). δ is an adjustable step size. Compute

the ratio

Rσ =
π(σ̃2

b |τ, Zl, Yl, l = 1, . . . , L)σ̃2
b

π(σ2
b |τ, Zl, Yl, l = 1, . . . , L)σ2

b

and update σ2
b = σ̃2

b with probability min(1, Rσ).
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Step 3. Update τ based on π(τ |σ2
b , Zl, Yl, l = 1, . . . , L). Generate a proposal τ̃ by

“switch/swap”, i.e., with probability ξ, randomly swap one 1 term with one

0 term; and with probability 1 − ξ, randomly pick one position and switch it.

Then let

Rτ =
π(τ̃ |σ2

b , Zl, l = 1, . . . , L)

π(τ |σ2
b , Zl, l = 1, . . . , L)

and update τ = τ̃ with probability min(1, Rτ ).

Step 4. Update α conditional on current values of σ2
b , τ and Zl through the conditional

distribution α|σ2
b , τ, Zl ∼ N(µα, Vα), where µα and Vα are defined in Web

Appendix B.

Step 5. Conditional on current values of α, σ2
b , τ , Zl, update b0 by b0|α, σ2

b , τ, Zl ∼

N(µ0, V0) where µ0 and V0 are defined in Web Appendix B.

Step 6. Conditional on current values of b0, α, σ2
b , τ and Zl, update bl, l = 1, . . . , L by

bl|b0, α, σ2
b , τ, Zl ∼ N(µl, Vl) where µl and Vl are defined in Web Appendix B.

Repeat Step 1 − 6 until convergence.

In Appendix C, we verify that MCMC algorithm 1 converges to a unique equi-

librium distribution, which is our posterior distribution defined in Section 5.2. The

“switch/swap” proposal used in Step 6 is similar to the methods used in Brown et

al. ([8], [9]). Our simulation shows that if the number of functional predictors is

small, this type of proposal can locate the correct value of τ within a few iterations.

However, when the number of functional predictors is large, the size of the searching
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space for τ increases at an exponential rate. The “switch/swap”proposal can hardly

find successful proposals because of the discrete nature of the large state space, thus

results in extremely low acceptance rate (e.g., acceptance rate less than 0.1%).

In order to obtain better mixing for τ , we construct a more effective EMC algo-

rithm based on algorithm 1. The EMC algorithm is a MCMC scheme that inherits

the attractive features from both simulated annealing and genetic algorithm. It simu-

lates a population of I Markov chains in parallel, each with a different “temperature”.

The temperatures are ordered decreasingly to form a “ladder”. For each chain, the

posterior is transformed according to its temperature. Denote the target posterior

distribution as π(θ) and the temperature for the ith chain as ti, the transformed pos-

terior for the ith chain is πi(θ) ∝ π(θ)1/ti . Depending on ti, such a transformation

makes the unnormalized target posterior density more flat or more spiky. The EMC

algorithm improves the Metropolis-Hastings updates by introducing three operations:

mutation, crossover and exchange. These operations allow both independent updates

for each chain and interactions between neighboring chains. We introduce more de-

tails of the EMC algorithm in Appendix D. More information about EMC can be

found in Liang and Wong [39], Liu [40], Goswami and Liu [24], and Bottolo and

Richardson [7].

When using the EMC algorithm, there are several crucial parameters need to be

determined: the number of chains I, temperature of each chain and the maximum

temperature. We adopt a simple method suggested by Bottolo and Richardson (2008)
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to set temperature for each chain, which uses a geometric sequence and adjusts the

common ratio in a burn-in period so that the acceptance rate for the exchange oper-

ation is close to 50%. For the number of chains and the maximum temperature, we

suggest to choose the number of chains to be around J/2, and choose the maximum

temperature between 10 and 103 according to experience. The algorithm stated below

gives details of the EMC algorithm for our proposed model. In this algorithm, we

borrow the idea of Bottolo and Richardson [7], where they update the main parame-

ter of interest (the γ parameter in their setup) using EMC with multiple chains, and

update the nuisance parameter (the τ parameter in their setup) conditional on the

main parameter obtained from the chain with temperature 1.

5.3.2 Algorithm 2 (EMC)

Step 0. Set initial values for bl’s, α, τ and σ2
b . And set up an initial temperature

ladder: t1 > t2 > . . . > tI > 0 with the initial ratio of the geometric sequence

a = ti+1/ti, i = 1, . . . , I. We adjust the temperature ladder so that t1 is

bounded by the maximum temperature and set one temperature to be exactly

1. Let the step-size for adjusting temperature be δa = log2(a)/ñ, where ñ

is the ratio of the burn-in period to a block size (usually 100). Set value

for parameter q, the probability of mutation and crossover, and for ξ, the

probability of switch and swap within the mutation step.

Step 1. Run step 1 − 2 in algorithm 1 based on the chain with temperature equals 1,
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obtain samples of Zl’s and σ2
b . These steps should be identical with those in

algorithm 1 since temperature value 1 does not modify the posterior density.

Step 2. Conditional on current values of Zl’s and σ2
b , update τ according to the fol-

lowing steps in 2.1 and 2.2. For convenience, here we denote π(τ |σ2
b , Zl, Yl, l =

1, . . . , L) as π(τ |·).

Step 2.1. (mutation/crossover) With probability q, perform a mutation step inde-

pendently for each chain, i.e. “switch” or “swap” with probability ξ, as

described in step 3 of algorithm 1. Denote the mutated value as τ̃ and

compute the log ratio log rm = [log π(τ̃ |·) − log π(τ |·)] /t, where t is the

temperature of the chain. Update τ = τ̃ with probability min(1, rm).

With probability 1− q, perform a crossover step [I/2] times, where [I/2]

denotes the integer part of I/2. The crossover is conducted as follows:

selecting a pair of chains (i, j) according to some selection rules (see Liu

(2001)), and exchange the right segment of the two τ ’s from a random

point. Denote the old values as (τ i, τ j), and the crossed values as (τ̃ i, τ̃ j),

we then compute the log ratio:

log rc =
log π(τ̃ i|·) − log π(τ i|·)

ti
+

log π(τ̃ j|·) − log π(τ j|·)
tj

+log
T ((τ i, τ j)|(τ̃ i, τ̃ j))

T ((τ̃ i, τ̃ j)|(τ i, τ j))

where T (x|y) is the transition probability from y to x. (τ̃ i, τ̃ j) are ac-

cepted with probability min(1, rc).

Step 2.2. (exchange) Exchange τ values from two adjacent chains I times, i.e.,
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randomly choose τ i and τ j from neighboring chains, and compute the log

ratio:

log re =
[
log π(τ j|·) − log π(τ i|·)

]
(
tj − ti
titj

)

exchange τ i with τ j with probability min(1, re).

Step 3. Conditional on current values of Zl’s, σ2
b , and current sample of τ from the

chain with temperature 1, run Step 4 − 6 of algorithm 1 based on the chain

with temperature equals 1, obtain samples of α, b0 and b. This step should be

identical with Step 4 − 6 in algorithm 1.

Step 4. For every block of iterations within the burn-in period, we adjust the tem-

perature ladder according to the acceptance rate of the exchange operations

within this block. A new geometric ratio ã is computed by log2 ã = log2 a±δa,

where the “+” sign is used when we would like to reduce the acceptance rate

of exchange. The new temperature ladder then is applied to the next block of

iterations.

Repeat Step 1 − 4 until convergence.

The above algorithm is an extension of algorithm 1. We have applied the EMC

algorithm to the step of updating τ , while keeping the update of all other parame-

ters the same as in algorithm 1, similar to the algorithm in Bottolo and Richardson

[7]. As shown in simulation 2 and real data application, this algorithm seems work

well. However, by now we haven’t been able to figure out what the target posterior
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distribution looks like under this algorithm setup, and we haven’t been able to prove

that the target distribution associated with this algorithm will result in a station-

ary distribution for the whole chain. The proof of the convergence remains an open

problem.

5.4 Setting Parameters

In Section 5.2.1 and Section 5.2.2, we suggest to determine the truncation parameters

pj and the weights {wj
k}∞k=1 using the method in Section 3.5. Besides pj and {wj

k}∞k=1,

there are several other priors need to be set, including σ2
1, σ2

0, (d1, d2), ωj’s and (ν1,

ν0).

Among these parameters, σ2
1 and σ2

0 are scaling parameters in the covariance of

α and β0
j (t)’s. We usually set them between 10 and 100. Larger values also work

but don’t have significant influence to the posterior estimation of α and β0
j (t)’s. The

parameter ωj reflects the a priori belief on the probability that the jth functional pre-

dictor is selected. If no further information is available on the preference of selecting

certain functional predictor, we can set ωj to be a constant across all j’s, which is the

proportion of functional predictors we expect to select. d1 and d2 are the parameters

of the inverse-gamma prior for the scaling parameter σ2
b . To determine these two

parameters, our suggestion is to set up a mean and variance for the inverse-gamma

prior and solve for d1 and d2. For example, if one set the inverse-gamma prior for σ2
β

with mean 1 and variance 80, the resulting solution is d1 = 2.01, d2 = 0.9. On the
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setting of (ν1, ν0), since we have scaling parameters σ2
b and σ2

0 for γτj
, we usually fix

ν1 = 1 and set ν0 close to zero (e.g, ν2
0 = 10−6).

Other parameters, such as δ, q, ξ and a, also need to be determined in the two

MCMC algorithms. Parameter δ affects the acceptance rate of σ2
b . It turns out that an

empirical value of δ between 0.5 and 2 yields acceptance rate approximately between

20% and 60%. Parameter q in algorithm 2 determines the probability of mutation,

which is usually set to be 0.5. Another parameter ξ determines the swapping proba-

bility in step 3 of algorithm 1 and in the mutation step in algorithm 2. No significant

improvement on the acceptance rate of τ is found when adjusting the values of ξ,

so we usually set it to be 0.5. The geometric ratio a in Algorithm 2 controls the

temperature ladder, and the initial value of a is usualy set to be 4.

5.5 Simulation Results

We conduct two simulation studies to evaluate the performance of the proposed model

for functional data classification. In both simulations, we generate data with random

effects and fixed effects. Simulation 1 uses only 4 functional predictors, in which case

Algorithm 1 is expected to work well. Simulation 2 raises the number of functional

predictors to 20, and algorithm 1 suffers slow mixing. Algorithm 2 is used, which

improves the mixing for posterior samples of τ .
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5.5.1 Simulation 1

We generate n = 1000 i.i.d. observations, using 2 non-functional predictors and 4

functional predictors. For the non-functional predictors, one of them is generated

from a uniform distribution on [0, 1], the other is a binary variable. The 4 functional

predictors are generated using the first 10 orthonormal cosine bases on interval [0, 1],

i.e., using φ0(t) = 1, φk(t) =
√

2 cos(kπt), k = 1, . . . , 9 (see Eubank (1999) for details

of cosine series). The random effect has two levels, which result in two vectors of

coefficients: bl, l = 1, 2. We set the true value of τ to be (0, 1, 0, 1), indicating that the

first and the third function do not contribute to the model, i.e., βl
1(t) = βl

3(t) ≡ 0,∀l.

Other parameters used to generate the data are set as σ2
0 = 10, σ2

1 = 10, σ2
b = 5,

and ν2
1 = 1. The weights {wj

k}∞k=1 used for the prior covariance are determined using

parameters m1 = 0.8, m2 = 3. The binary responses are generated based on (5.1)

using numerical integration. After data generation, we randomly split the data into

a training set with 800 observations and a test set with 200 observations.

The proposed model in Section 2 is applied to the training data. We use FPC

to construct the orthonormal basis and set the approximation criterion described in

Section 5.4 to be c1 = 0.99, which results in pj = 4 for all j. Based on the FPC

scores, the model is trained using Algorithm 1 with the following prior parameters:

σ2
0 = σ2

1 = 100, d1 = 2.01, d2 = 0.9, wj ≡ 0.5, ν2
1 = 1, and ν2

0 = 10−6. The prior

parameters for the weight matrix W is set by letting m1 = 0.9, m2 = 2. Other

parameters in the MCMC are set as follows: δ = 0.9, which gives an acceptance
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rate of σ2
b around 45%; ξ = 0.5, which is the swapping probability in step 3 of al-

gorithm 1. After 10000 iterations with a burn in period of 4000, we find that the

posterior samples of τ converge to the true τ within 50 iterations. The estimated

marginal posterior probability P{τj = 1, j = 1, . . . , 4} = (0, 1, 0, 1), indicating that

our algorithm has successfully selected the second and the fourth functional predictor

as expected. Figure 5.2 shows the autocorrelation plot of the posterior samples of

σ2
b and the corresponding histogram plot. We check the convergence of σ2

b using the

Geweke convergence diagnostic test (Geweke 1992). This test uses the first 10% and

last 50% of the posterior σ2
b samples, and yields a Z-score of −0.67, indicating appro-

priate convergence. Note that since the orthonormal bases used for estimation and

data generation are different, the posterior estimates of bl’s and b0 are not comparable

with the true values. Figure 5.3 shows the posterior means of the coefficient functions

and the corresponding simultaneous 95% credibility bands for the non-zero coefficient

functions, together with the true functions. The simultaneous credibility band is ob-

tained by finding a constant M , such that 95% of the simulated posterior functions

fall into the interval β̂l
j(t)±Mσ̂l

j(t),∀t, where β̂l
j(t) and σ̂l

j(t) are the posterior mean

and standard deviation of the coefficient functions. From Figure 5.3, we see that the

true coefficient functions lie in the 95% confidence bands.

After the training step, the estimated coefficient functions are applied to the test

set to get the posterior predictive probability. Treating yi = 1 as diseased and yi = 0

as normal, the prediction on the test set gives sensitivity 93% and specificity 99%,
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Figure 5.3: The posterior estimation of the non-zero coefficient functions βl
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coefficient estimations are close to zero.
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with a total misclassification rate 4%. Note that the results reported here are obtained

by maximizing the sum of sensitivity and specificity on the emprical ROC curve (see

Zweig and Campbell (1993) for an introduction to ROC Curves).

As mentioned in Section 5.3, in Algorithm 1 we use a Metropolis-Hastings step

with a “switch/swap” proposal to update the parameter τ . In this simulation, the

searching space for τ only has 24 possible values. The tracing of the posterior sam-

ples of τ shows that Algorithm 1 starts from a random value, reaches the correct

value in only 6 iterations and stays there afterwards. However, as the length of τ in-

creases, the size of the state space increases exponentially, and the samples proposed

by “switch/swap” can hardly be accepted. Simulations show that when the length

of τ goes beyond 8, Algorithm 1 suffers extremely low acceptance rate for τ and the

MCMC mixes very slowly. Therefore we suggest to use Algorithm 2 when more than

8 functional predictors are involved.

5.5.2 Simulation 2

To evaluate the performance of Algorithm 2 when there are a relatively large number

of functional predictors, we generate n = 1000 i.i.d. observations using the first 10

cosine bases but increase the number of functional predictors per observation to 20.

We set the true τ to be a binary vector such that 8 out of the 20 components are 1’s.

Other parameters are set to be the same as in simulation 1. Again, we split the data

into training and test set as in simulation 1.
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Similarly as in simulation 1, in the dimension reduction step, we set the approxi-

mation criterion c1 = 0.99, which results in pj = 4 for all j. Eight parallel chains are

used in Algorithm 2 with a maximum temperature of 100. To construct the temper-

ature ladder, we set the geometric ratio starting at 4. Other prior parameters are set

similarly as in Simulation 1. We perform 20000 MCMC iterations, in which the first

5000 iterations are used as a burn-in period to adjust the temperature ladder, and

another 5000 are treated as a second-stage burn-in period. Therefore the posterior

inference is based on the last 10000 iterations. Coded in R language, the simulation

takes about 11 hours when running on one dual-processor (900MHz Intel Itanium 2

for each) login node (8GB RAM) of a computing cluster. The final temperature lad-

der after the burn-in period adjustment is (100, 6.79, 1, 0.031, 0.002, 1.4 × 10−4, 9.8 ×

10−6, 6.7 × 10−7). We obtain several acceptance rates for diagnosis. The acceptance

rate of σ2
b is 31%. The acceptance rates of τ for different chains in the mutation

operation are (0.25, 0.02, 0.001, 9 × 10−4, 8 × 10−4, 6 × 10−4, 5 × 10−4, 4 × 10−4), in

the order of the temperature ladder. The acceptance rates for crossover and ex-

change operations are 38% and 78%, respectively. We plot the estimated marginal

posterior probability P{τj = 1, j = 1, . . . , 20} under three selected temperatures in

Figure 5.4, together with the true value of τ . This figure shows that at temperature

100 the marginal posterior probabilities are non-zero for all components of τ . The

chains with temperature 1 and with the lowest temprature produce similar marginal

posterior probilities, and they both pick out the correct functional predictors. The
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Figure 5.4: The marginal posterior probabilities P{τj = 1, j = 1, . . . , J} at 3 different
selected temperatures. The symbol ⋆ indicates the true value of each component of
τ .

estimated regression coefficient functions are obtained and applied to the test set for

prediction, with a resulting sensitivity of 91%, specificity of 99% and misclassification

error of 5%.

5.6 Fluorescence Spectroscopy Data Application

The proposed model is applied to the fluorescence spectroscopy data introduced in

Section 1.2. In this dataset, every EEM measurement is an observation with 16

functional predictors, corresponding to the 16 excitation wavelengths. Our goal is to

select a subset of the 16 curves in the EEM to reduce the cost of data collection, and

perform classification based on the selected subset.
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There are totally 2414 measurements taken from 1006 patients. Each patient has 1

or more (up to 6) sites measured and some patients may have repeated measurements.

All the measurements come from 6 device-clinic combinations, which we treat as the

sources of random effects. We also consider two fixed effects: tissue-types, coded as

1, 2 and menopausal status, coded as 1, 2, 3, and treat them as non-functional predic-

tors in the proposed model. After pre-processing (background correction, smoothing,

etc), the total 2414 measurements are randomly split into a training set with 1353

observations and a test set with 1061 observations. This partition is conducted at

patient level, i.e., measurements from the same patient cannot exist in both training

set and test set. The proportion of diseased observations in the training and test

set are 10% and 9%, respectively. We use both cosine basis expansion and FPC to

approximate functional predictors. To avoid possible bias, the computation of FPC

scores for the test set is based on the eigenfunctions estimated from the training set.

We determine the number of basis used for each curve by setting the approximation

criterion c1 = 0.998 for FPC, and c2 = 0.992 for cosine basis expansion. The re-

sulting pj’s lie between 2 and 4 for each functional predictor. The priors are set as:

σ2
0 = σ2

1 = 100, d1 = 2.01, d2 = 0.9, w = 0.5, ν1 = 1, and ν0 = 0.001. Using the way

described in Section 5.4, the weight matrix W is determined by setting m1 = 0.8,

m2 = 3. For both FPC and cosine basis expansion, we use 9 parallel chains, and set

the initial geometric ratio a = 4. The maximum temperature is 10 in the FPC case

and 5 in the cosine expansion case. Other parameters are set as: δ = 0.9, q = 0.5,
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Table 5.1: Real Data Application: The acceptance rates for the EMC algorithm
based on two different function approximation methods. M-H denotes the Metropolis-
Hastings update. The vector values correspond to the acceptance rates of all chains
at the temperature ladder stated in the text.

Accept. rate Method using cosine basis Method using FPC’s
M-H for σ2

b 0.457 0.439
Mutation for τ (31, 18, 7, 8, 8, 6, 6, 6, 5) × 10−2 (39, 28, 18, 10, 5, 6, 5, 4, 4) × 10−2

Crossover for τ 0.23 0.20
Exchange for τ 0.44 0.48

ξ = 0.5. Similary as in Simulation 2, we perform 20000 MCMC iterations with 5000

burn-in iterations for temperature ladder adjustment, and treat an additional 5000

iterations as a second-stage burn-in period. The acceptance rates in both cases are

listed in Web Table 1. In Figure 5.5, we plot the estimated marginal posterior prob-

abilities P{τj = 1, j = 1, . . . , 16} for both cases. From Figure 5.5, we see that the

two basis expansion methods provide similar marginal posterior probabilities for τ ,

and both methods show high probability of selecting functions at excitation 340 and

400nm, followed by functions at excitation 470 and 480nm and others. The marginal

posterior probabilities suggest the selection order of the functional predictors, higher

quantities indicating higher priority of being selected. For example, if we would like

to select 4 functional predictors, both methods of basis expansion suggest to select

functions at excitation 340, 400, 470 and 480nm. The posterior estimate for σ2
b is

0.253 using FPC, and is 0.248 using cosine basis expansion.

The posterior inference for functional predictor selection can also be based on
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Figure 5.5: The marginal posterior probabilities P{τj = 1, j = 1, . . . , 16} for both
cases basis expansions. The top panel is based on FPC, the bottom panel is based
on Cosine basis expansion.

the joint posterior distribution of τ rather than the marginals. In Figure 5.6, we

plot the most frequently visited models for the two function approximation methods.

Figure 5.6 shows that both methods select curves at excitation wavelength 340 and

400nm with high frequency. The curves at excitation wavelength 470 or 480nm are

also selected frequently but they rarely appear in the same model.

The estimated regression coefficients are applied to the test set for prediction.

Table 5.2 lists the prediction results in comparison with 5 other classifiers. Note that

all the classifiers in Table 5.2 use both non-functional and all 16 functional predictors.

In particular, the BVS model is the Bayesian variable selection method proposed in

Chapter 3, which does not consider random effects and functional predictor selection.
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Table 5.2: The prediction on test set results using the proposed model(BHFPS) com-
pared with 5 other methods. Two methods of dimension reduction are used: cosine
series expansion and functional principal component analysis. AUC: Area under ROC
curve; MisR: misclassification rate; Sens: sensitivity; Speci: specificity; BHFPS: the
proposed Bayesian hierarchical functional predictor selection model; BHVS: Bayesian
hierarchical variable selection model; BVS: regular Bayesian variable selection model;
KNN: K-nearest neighbor; LDA: linear discriminant analysis; SVM: support vector
machine. See text for explanation of BVS and BHVS models

Using Cosine basis expansion Using FPC
Method AUC MisR Sens Spec AUC MisR Sens Spec
BHFPS 0.817 24.2% 74.7% 75.9% 0.822 21.2% 72.6% 79.4%
BHVS 0.819 25.6% 76.8% 74.1% 0.824 27.2% 77.9% 72.3%
BVS 0.802 28.1% 76.8% 71.4% 0.819 30.5% 84.2% 68.0%
KNN 0.697 27.7% 62.1% 73.3% 0.718 32.1% 71.8% 74.7%
LDA 0.796 27.3% 74.7% 72.5% 0.804 25.0% 75.8% 74.9%
SVM 0.657 56.6% 85.3% 39.2% 0.679 38.4% 68.4% 61.0%

The Bayesian hierarchical variable selection (BHVS) is an extension of the BVS model

which considers random effects by a hierarchical setup, but does not perform func-

tional predictor selection. From Table 5.2, we see that the proposed method (BHFPS)

provides comparable prediction results with BHVS. Both BHFPS and BHVS obtain

slightly higher AUC scores than the BVS model does. Table 5.2 also shows that the

two orthonormal basis expansion methods are comparable in their prediction ability,

although the cosine basis expansion method has slightly lower AUC than the FPC

method. In Figure 5.7, we compare the empirical ROC curves for models listed in

Table 5.2 based on the FPC method.

Based on the functional predictors selected by the proposed model, other classi-

fication algorithms can be trained independently using the selected curves only. For
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example, trainning the BHVS model on the first 4 functional predictors selected by the

proposed model (based on the marginal posterior of τ) gives sensitivity 77.9% and

specificity 70.0%, with corresponding AUC 0.819 and misclassification rate 20.7%.

Compared with those in Table 5.2, we see that these prediction results are as good

as those based on all the 16 curves. Hence it is possible to achieve a high prediction

power by using a subset of functional predictors. Using the selected curves, a new

device can be constructed which reduces cost and saves measurement time.

5.7 Discussion

Motivated by practical problems on functional data classification, we have proposed

a Bayesian hierarchical model to deal with the situations when functional predictors

are contaminated by random batch effects. Inferences based on this model help to

select a subset of functional predictors for classification. This model is applied to

an application problem which uses fluorescence spectroscopy data for pre-cervical

cancer diagnosis. The results suggest that it is possible to build more cost-effective

device with less spectral curves. In this section, we discuss some issues related to the

proposed model.

The first one is about the prior correlation matrix of βl
j(t). When setting priors

for the coefficient functions in (5.2), we assume that βl
j(t) are independent for all j

and l, which leads to the prior correlation matrix R = Ip in (5.9) after approximation

by basis expansion. This is just a simplified prior choice. It is possible to allow the



106

priors for βl
j(t) to be correlated. For example, we may assume that (βl

1(t), . . . , β
l
J(t))

has a multivariate Gaussian process, as done in Morris and Carroll (2006). In such a

case, it may be difficult to determine the prior correlations and the resulting posterior

computation may be complex.

Another issue is about the necessity of using a hierarchical structure to adjust

for batch effects. As we have pointed out in Section 5.1, for data obtained from an

unbalanced experimental design, classification can be easily biased by batch effects.

Algorithms which do not adjust for batch effects may result in classification based

on batch difference, rather than the disease information. Using a hierarchical model

is a natural way to model the batch structure. In our real data application, the

hierarchical models (BHFPS and BHVS) are more preferable as they account for

possible batch effects, although they may not necessarily improve prediction over

models like BVS (see Table 5.2 and Figure 5.7). In fact, we should not always expect to

improve the prediction by accounting for batch effects, since with a bad experimental

design, a classification algorithm can get prediction as good as 100% sensitivity and

specificity, by simply using the batch information (Baggerly et al., 2004).

As a side note, in our simulation and real data applications, we train the proposed

model using data from all batches, and make predictions based on observations with

the same batch information. Prediction on observations from new batches is also

applicable. However, it is natural to expect that the prediction will be worse when

predicting on new batches, since the random effect of the new batch is unknown when
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training the model.

Finally, like many other regression problems, when there exists severe collinearity

between the functional predictors, a unique solution for the “best” subset may not

be guaranteed using our proposed model. In this case, exploring functional predictor

selection from a Bayesian decision theory point of view may provide a solution.



Chapter 6

Priors for Covariance Operators in

Functional Data Analysis

In this chapter, we discuss the properties of covariance operators of functional data

and the conditions for formulating appropriate priors for such covariance operators.

We also propose a prior and prove some of its mathematical properties.

6.1 Grid Refinement Invariance Principle

Although functional data ideally live in infinite dimensional space, they can only be

collected and stored in finite dimensional (multivariate) form. They are typically

recorded either on some fine grids or in forms of finite linear combinations of basis

functions. For example, for a random function X(t) defined on a compact domain

T ⊂ R, one can discritize T on a grid of p points, Tp = (t1, . . . , tp)
T . A realization

108
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of X(t), x(t) can thus be stored in a vector form ~x = (x(t1), . . . , x(tp))
T , although

p can be very large and x(ti) can be very close to x(ti+1). A linear interpolation of

~x on the grid Tp provides an approximation of x(t). Statistical methods which treat

functional data as multivariate fail to make use of the “functional structure” of the

data. The study in this chapter is motivated by a general priciple of functional data

analysis stated as follows:

Grid Refinement Invariance Principle(GRIP) As the order of approxima-

tion becomes more exact, i.e., the grids become finer or the upper limit of the basis

function expansion tends to infinity, the functional data analysis method should ap-

proach the appropriate limiting analogue of the true functional (infinite dimensional)

observations.

Under GRIP, we would like to look for functional data analysis models that are

appropriately defined in the infinite dimensional space and project them down to

finite dimensional space in implementation. This makes it necessary to investigate the

properties of functional data in infinite dimensional space. We study these properties

based on the theoretical structure of Gaussian measures.

6.2 Gaussian Measures

We follow Prato [56] to define Gaussian measures but use slightly different notations.

Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm |·| =
√

〈·, ·〉. In

this chapter, we assume that H is associated with a real scalar field. For convenience,
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we write a sequence {xk}∞k=1 in H as (xk). Let B(H) be the Borel σ−field on H.

We use L(H) to denote the Banach algebra of all continuous linear operators from

H to H, and L+(H) represents the subset of L(H) which contains all symmetric and

nonnegative definite operators, i.e.,

L+(H) = {A ∈ L(H) : 〈Ax, y〉 = 〈x,Ay〉,∀ x, y ∈ H, and 〈Ax, x〉 ≥ 0,∀x ∈ H}.

Furthermore, we denote as L(1) the subset of L(H) that are trace class operators, in

the sense that if A ∈ L(1), then (A∗A)1/2 has eigenvalues {λk}∞k=1 with
∑∞

k=1 λk < ∞.

The trace of A ∈ L(1) is defined as

TrA =
∞∑

k=1

〈Aek, ek〉, (6.1)

where {ek}∞k=1 is an arbitrary complete orthonormal sequence (c.o.n.s.) of H. L+
(1)(H)

represents the set of all operators in L+(H) ∩ L(1)(H). We call operators in L+
(1)(H)

S−operators.

6.2.1 Gaussian Measures Defined on Finite-dimensional Hilbert Space

For a pair of real numbers (m, s) with s > 0, we define the one-dimensional Gaussian

measure (with mean m and variance s) on (R,B(R)) by

µm,s(dx) =
1√
2πs

e−
(x−m)2

2s dx.

We also allow s = 0, in which case, for all A ∈ B(R),

µm,0(A) = δm(A) =





1 if m ∈ A,

0 if m /∈ A.
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For a d-dimensional Hilbert space H and S ∈ L+
(1)(H), we can find the set of eigen-

vectors of S, denoted as (e1, . . . , ed), which is orthonormal and satisfies

Sek = λkek, k = 1, . . . , d, for some λk ≥ 0.

For any x ∈ H, if xk = 〈x, ek〉, k = 1, . . . , d, H can be identified with R
d through an

isomorphism γ:

γ : H −→ R
d, and γ(x) = (x1, . . . , xd),∀x ∈ H.

We then define the Gaussian measure on (Rd,B(Rd)), hence on (H,B(H)) by

µm,S = ×d
k=1 µmk,λk

, (6.2)

which is a product measure formed by d one-dimensional measures. It is easy to show

the following properties of finite dimensional Gaussian measures:

Proposition 6.2.1. Let m ∈ H, S ∈ L+
(1)(H). For µm,S defined in (6.2), we have

ˆ

H

xµm,s(dx) = m,

ˆ

H

〈y, x − m〉〈z, x − m〉µm,S(dx) = 〈Sy, z〉,∀ y, z ∈ H.

The characteristic function(Fourier transform) of µm,S is

µ̂m,S(h) :=

ˆ

H

ei〈h,x〉µm,S(dx) = e〈m,h〉− 1
2
〈Sh,h〉, h ∈ H.

m and S are called the mean and covariance operator of µm,S. Furthermore, the

Gaussian measure is uniquely determined by its characteristic function.
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6.2.2 Gaussian Measures Defined on Infinite-dimensional Hilbert Space

Now assume that H is a infinite dimensional separable Hilbert space. We first define

the mean and covariance for a measure µ on (H,B(H)). Suppose
´

H
|x|µ(dx) < ∞,

for any h ∈ H, the linear functional f : H −→ R with

f(h) =

ˆ

H

〈x, h〉µ(dx), h ∈ H,

is continuous since

|f(h)| ≤
ˆ

H

|x|µ(dx)|h|, h ∈ H.

By Riesz representation theorem ([81], page 90), there exists a unique m ∈ H such

that

〈m,h〉 =

ˆ

H

〈x, h〉µ(dx), h ∈ H.

We call m the mean of µ and write m =
´

H
xµ(dx). Now suppose

´

H
|x|2µ(dx) < ∞.

We consider the bilinear map g : H × H −→ R such that

g(h, k) =

ˆ

H

〈h, x − m〉〈k, x − m〉µ(dx), h, k ∈ H.

It is easy to see that g is continuous since

|g(h, k)| ≤
ˆ

H

|x − m|2µ(dx)|h||k|, h, k ∈ H.

Again, by Riesz theorem, there is a unique linear bounded operator S ∈ L(H) such

that

〈Sh, k〉 =

ˆ

H

〈h, x − m〉〈k, x − m〉µ(dx), h, k ∈ H. (6.3)
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We call S the covariance of µ. It is easy to show that S is symmetric and nonnegative

definite. Also, by the definition of trace in (6.1),

TrS =
∞∑

k=1

〈Sek, ek〉 =
∞∑

k=1

ˆ

H

〈ek, x − m〉2µ(dx) =

ˆ

H

|x − m|2µ(dx) < ∞,

where the last equality is by Parseval identity (and monotone convergence theorem),

therefore S ∈ L+
(1)(H).

Definition 6.2.2. Gaussian Measure Let m ∈ H and S ∈ L+
(1)(H). A Gaussian

measure µ := µm,S on (H,B(H)) is a measure µ with mean m, covariance operator

S and characteristic function

µ̂m,S(h) = exp{i〈m,h〉 − 1

2
〈Sh, h〉}, h ∈ H.

The Gaussian measure µm,S is called non-degenerate if Ker(S) = {x ∈ H : Sx =

0} = {0}. [56]

Prato [56] shows the existence and uniqueness of a Gaussian measure through the

following proposition:

Proposition 6.2.3. For any m ∈ H and S ∈ L+
(1)(H), there exists a unique Gaussian

measure µ = µm,S on (H,B(H)).[56]

Proof. We summarize Prato’s proof here. First, since H is a infinite dimensional

separable Hilbert space, we can define a projection mapping Pn : H −→ Pn(H) by

Pnx =
∑n

k=1〈x, ek〉ek,∀x ∈ H. Then we have limn Pnx = x,∀x ∈ H. This holds for

any c.o.n.s. (ek) of H. Since S ∈ L+
(1)(H), there exists a c.o.n.s. (ek) and a sequence
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of non-negative numbers (λk) such that

Sek = λkek, k ∈ N.

The existence of such (ek) and (λk) is shown in Theorem 1.5 (spectral representation)

by Kuo[34]. λk’s are called eigenvalues and ek’s are called eigenvectors. For any

x ∈ H, set xk = 〈x, ek〉. This constructs an isomorphism γ between H and l2 (The

space of square summable sequences) defined by

γ : H −→ l2,

and γ(x) = (xk),∀x ∈ H. Thus we can identify H with l2. Now we construct the

product measure µ := ×∞
k=1µmk,λk

over the product space R
∞ := ×∞

k=1R. The exis-

tence of µ is guaranteed by the extension theorem stated in Prato’s book([56],Theorem

1.9). So it remains to show that µ is a Gaussian measure with mean m, covariance

S.

For h ∈ H, |〈x, h〉| ≤ |x||h| and

(

ˆ

H

|x|µ(dx))2 <

ˆ

H

|x|2µ(dx) =

ˆ

R∞

∞∑

k=1

x2
kµ(dx)

=
∞∑

k=1

ˆ

R

x2
kµmk,λk

(dxk) =
∞∑

k=1

(λk + m2
k) = TrS + |m|2 < ∞.

Hence by dominated convergence theorem,

ˆ

H

〈x, h〉µ(dx) = lim
n

ˆ

H

〈Pnx, h〉µ(dx).
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But

ˆ

H

〈Pnx, h〉µ(dx) =
n∑

k=1

ˆ

H

xkhkµ(dx)

=
n∑

k=1

hk

ˆ

R

xkµmk,λk
(dxk) =

n∑

k=1

hkmk = 〈Pnm,h〉 −→ 〈m,h〉,

as n → ∞. Therefore m is the mean of µ.

To determine the covariance (operator) of µ, we fix y, z ∈ H and let

ˆ

H

〈x − m, y〉〈x − m, z〉µ(dx) = lim
n

ˆ

H

〈Pn(x − m), y〉〈Pn(x − m), z〉µ(dx).

Since

ˆ

H

〈Pn(x − m), y〉〈Pn(x − m), z〉µ(dx) =
n∑

k=1

ˆ

H

(xk − mk)
2ykzkµ(dx)

=
n∑

k=1

ykzk

ˆ

R

(xk − mk)
2µmk,λk

(dxk) =
n∑

k=1

ykzkλk = 〈PnSy, z〉 −→ 〈Sy, z〉,

as n → ∞. Therefore S is the covariance of µ.

Finally, we verify that the characteristic function of µ is that of a Gaussian mea-

sure. For h ∈ H,

ˆ

H

ei〈x,h〉µ(dx) = lim
n→∞

ˆ

H

ei〈Pnx,h〉µ(dx) = lim
n→∞

n∏

k=1

ˆ

R

eixkhkµmk,λk
(dxk)

= lim
n→∞

n∏

k=1

eimkhk−
1
2
λkh2

k = lim
n→∞

ei〈Pnm,h〉e−
1
2
〈PnSh,h〉

= ei〈m,h〉e−
1
2
〈Sh,h〉.

So the characteristic function of µ is that of a Gaussian measure with mean m, covari-

ance operator S. Therefore µ = µm,S. Since the product measure on (R∞,B(R∞)) is

a unique extension of (Rn,B(Rn)), µm,S is unique.
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Proposition 6.2.4. A non-degenerate Gaussian measure on H is fully supported.

[56]

Proof. Let B(x, r) ∈ B(H) be an arbitrary ball with center x ∈ H and radius r > 0.

We just need to show that µm,S(B(x, r)) > 0. Let An = {x ∈ H :
∑n

k=1 x2
k ≤ r2

2
}

and Bn = {x ∈ H :
∑∞

k=n+1 x2
k < r2

2
}. Then µ(B(0, r)) ≥ µ(An

⋂
Bn) = µ(An)µ(Bn)

because An and Bn are independent([56],example 1.22). Clearly µ(An) > 0. It suffices

to show that µ(Bn) > 0 for n large enough. Now, by Markov inequality,

µ(Bn) = 1 − µ(Bc
n) ≥ 1 − 2

r2

∞∑

k=n+1

ˆ

H

x2
kµ(dx)

= 1 − 2

r2

∞∑

k=n+1

(λk + m2
k) > 0,

for n large enough.

6.3 A Possible Prior for Covariance Operators

Suppose {Xi}n
i=1 are i.i.d. random elements taking values in a separable Hilbert space

H. Let µ(·) be a Borel measure defined on (H,B(H)) such that
´

H
|Xi|µ(dXi) < ∞

and
´

H
|Xi|2µ(dXi) < ∞. Let the mean of µ(·) be zero and the covariance operator

of µ(·) be Aµ. Then,

〈Aµx, y〉 =

ˆ

H

〈x, z〉〈y, z〉µ(dz)
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and Aµ ∈ L+
(1)(H). In order to construct a prior for Aµ, we propose the following

expansion

A =
∞∑

j=1

wjZj ⊗ Zj, (6.4)

where wj > 0 and
∑

j wj < ∞. The operation ⊗ is defined as

(u ⊗ v) x = u〈v, x〉, (6.5)

for all u, v, x ∈ H. Zj’s are a priori assumed to be i.i.d. zero mean Gaussian random

elements in H with a known covariance operator B ∈ L+
(1)(H). We will show that the

right hand side of (6.4) converges almost surely in L(1), and A is in L+
(1)(H). Therefore

A is a L+
(1)(H) random variable. The distribution of A can be used as a prior for Aµ.

To construct a prior for the distribution of (6.4), several conditions need to be

satisfied, which should be able to gaurantee that the resulting posterior is consistent.

We say that a posterior distribution is consistent if the posterior measure on an

arbitrary ǫ-neighborhood (under some metric such as Hellinger metric) of the true

underlying distribution approaches to a point mass almost surely when the number of

observed samples approaches infinity. Proofs for posterior consistency under different

assumptions can be found in some Bayesian nonparametric literature, such as Barron,

Schervish and Wasserman [4], Ghosal,Ghosh and Van Der Vaart[23], Walker[75], and

Walker, Lijoi and Prünster[76]. Most proofs for posterior consistency assume that the

probability measures under study are absolutely continuous with respect to a σ-finite

dominating measure. It remains an open question how to construct the consistency

for random functions with infinite-dimensional Gaussian measures.
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For a prior in the form of (6.4), we conjecture that A must take values from the

space of L+
(1)(H) and the distribution of A must be fully supported on the whole space

of L+
(1)(H). Intuitively, if we want the posterior distribution to be close to the true

density, the prior distribution must put positive mass over a neighborhood of the true

density. An supportive example can be found in Schervish’s book ([67], page 430, Ex-

ample 7.79). We will show in Theorem 6.3.1 and Theorem 6.3.4 that
∑∞

j=1 wjZj ⊗Zj

converges in L+
(1)(H) almost surely and its distribution is fully-supported on L+

(1)(H).

Theorem 6.3.1. Let Zj ∈ L2 be i.i.d. zero mean Gaussian random functions taking

values in H, where H is a separable Hilbert space associated with norm | · |, then the

random covariance operator
∑n

j=1 wjZj ⊗ Zj is in L+
(1)(H) for every finite n, and

n∑

j=1

wjZj ⊗ Zj
a.s.→ A

as n → ∞ for some A ∈ L+
(1)(H).

Proof. Since the scalar field associated with H is real, 〈x, ay〉 = 〈ax, y〉 = a〈x, y〉.

1. First, we show that Zj ⊗ Zj is a random operator taking values in L+
(1)(H).

∀ x, y ∈ H, we have

〈Zj ⊗ Zjx, x〉 = 〈Zj〈Zj, x〉, x〉 = 〈Zj, x〉2 ≥ 0,

〈Zj ⊗ Zjx, y〉 = 〈Zj〈Zj, x〉, y〉 = 〈Zj, x〉〈Zj, y〉 = 〈x, Zj ⊗ Zjy〉.

This proves that Zj ⊗ Zj is positive definite and self-adjoint. To show that it

is trace class, let (ei) be a c.o.n.s. of H, if we denote || · ||L(1) as the trace class
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norm, then

||Zj ⊗ Zj||L(1)
=

∞∑

i=1

|〈Zj ⊗ Zjei, ei〉| =
∞∑

i=1

〈Zj, ei〉2 = |Zj|2 < ∞.

Now, for n fixed and wj > 0,∀j ≤ n, and ∀x, y ∈ H, we have

〈
n∑

j=1

wjZj ⊗ Zjx, x〉 =
n∑

j=1

wj〈Zj, x〉2 ≥ 0, (6.6)

〈
n∑

j=1

wjZj ⊗ Zjx, y〉 =
n∑

j=1

wj〈Zj, x〉〈Zj, y〉 = 〈x,
n∑

j=1

Zj ⊗ Zjy〉, (6.7)

||
n∑

j=1

wjZj ⊗ Zj||L(1)
=

∞∑

i=1

|〈
n∑

j=1

wjZj ⊗ Zjei, ei〉| =
n∑

j=1

wj|Zj|2 < ∞. (6.8)

This proves that
∑n

j=1 wjZj ⊗ Zj ∈ L+
(1)(H) for every finite n.

2. Now let An =
∑n

j=1 wjZj ⊗Zj and A =
∑∞

j=1 wjZj ⊗Zj. Note that we will also

need to show that A exists. The idea is to show that An is a Cauchy sequence

almost surely. Let m > n, then

||Am − An||L(1)
= ||

m∑

j=n+1

wjZj ⊗ Zj||L(1)
=

m∑

j=n+1

wj|Zj|2.

Therefore we just need to show that
∑m

j=n+1 wj|Zj|2 −→ 0, as m and n ap-

proaches infinity, which is equivalent to show that the series
∑∞

j=1 wj|Zj|2 con-

verges(since Zj’s are independent). This will be shown in the following (i.e.,

(a)-(c)) when we prove that A is trace class.

Firstly, we have,

A = lim
n→∞

n∑

j=1

wjZj ⊗ Zj = lim
n→∞

An,
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and

〈Anx, x〉 ≥ 0 (by (6.6)) ⇒ 〈lim
n

Anx, x〉 = lim
n
〈Anx, x〉 ≥ 0,

by the continuity of inner-product. Similarly,

〈Anx, y〉 = 〈x,Any〉 (by (6.7)) ⇒ 〈lim
n

Anx, y〉 = 〈x, lim
n

Any〉.

Hence A is positive definite and self-adjoint. To show that A is trace class, we

just need to show that ||A||L(1)
< ∞. For a c.o.n.s. (ek) of H, since

||A||L(1)
= ||

∞∑

j=1

wjZj ⊗ Zj||L(1)
=

∞∑

j=1

wj

∞∑

i=1

〈Zj, ei〉2 =
∞∑

j=1

wj|Zj|2,

it suffices to show the a.s convergence of the random series
∑∞

j=1 wj|Zj|2. We

use Kolmogrov three series theorem [63] to show this. ∀ c > 0, we have

(a)
∑

j P [wj|Zj|2 > c] =
∑

j P [|Zj|2 > c
wj

] ≤ ∑
j

E[|Zj |
2]

c/wj
= E[|Z1|2]

c
(
∑

j wj) <

∞, by Markov inequality and Zj ∈ L2.

(b)
∑

j E[wj|Zj|21{wj |Zj |2<c}] ≤
∑

j wjE[|Zj|2] = E[|Z1|2](
∑

j wj) < ∞, by the

fact that Zj are i.i.d. and Zj ∈ L2).

(c) We have

∑

j

V ar(wj|Zj|21{wj |Zj |2<c})

=
∑

j

E[w2
j |Zj|41{wj |Zj |2<c}] −

∑

j

E[wj|Zj|21{wj |Zj |2<c}]
2
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with

0 ≤
∑

j

E[w2
j |Zj|41{wj |Zj |2<c}] ≤

∑

j

cE[wj|Zj|21{wj |Zj |2<c}]

≤
∑

j

cE[wj|Zj|2] ≤ cE[|Z1|2](
∑

j

wj) < ∞

and

0 ≤
∑

j

E[wj|Zj|21{wj |Zj |2<c}]
2 ≤

(∑

j

E[wj|Zj|21{wj |Zj |2<c}]

)2

< ∞,

by E[wj|Zj|21{wj |Zj |2<c}] ≥ 0,∀j and results of part (b). Therefore,

∑

j

V ar(wj|Zj|21{wj |Zj |2<c}) < ∞ a.s.

Thus ||A||L(1)
=
∑∞

j=1 wj|Zj|2 converges a.s. in L+
(1)(H).

Before stating Theorem 6.3.4, we first give the definition for the support of a

measure as follows:

Definition 6.3.2. Let µ be a measure defined on a measurable space (Ω,B). The

support of µ (denoted as supp(µ)) is the set of all points ω in Ω for which every open

neighborhood Nω of ω has positive measure, i.e.,

supp(µ) = {ω ∈ Ω|ω ∈ Ω =⇒ µ(Nω) > 0}.

In some cases, we refer to the support of a random element as the support of the

induced measure. In Definition 6.3.3, we define the induced probability measure for

a random element following Resnick ([63], page 75).
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Definition 6.3.3. Let (Ω,B, µ) be a probability space, and suppose

X : (Ω,B) 7−→ (Ω′,B′)

is measurable. For A′ ⊂ Ω′, let

[X ∈ A′] := X−1(A′) = {ω : X(ω) ∈ A′}.

Define the set function µ ◦ X−1 on B′ by

µ ◦ X−1(A′) = µ(X−1(A′)).

Then µ ◦X−1 is a probability on (Ω′,B′) called the induced probability or distribution

of X, denoted as Law[X].

According to Definition 6.3.3, it is clear that supp(Law[X]) ⊂ Ω′.

Theorem 6.3.4. If we denote the measure of the random covariance operator A =

∑∞
j=1 wjZj⊗Zj as Law[A], then Law[A] is fully supported on the whole L+

(1)(H) space,

i.e.,

supp(Law[A]) = L+
(1)(H).

Proof. Let A0 be a fixed operator in L+
(1)(H), it suffices to show that ∀ ǫ > 0

P [||A − A0||L(1)
< ǫ] > 0,

where A denotes the random operator above.
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1. We first show that the above statement holds for A0 being a finite rank op-

erator in L+
(1)(H) with rank p. Since A0 ∈ L+

(1)(H), there exists orthonormal

eigenfunctions {ej}p
j=1 and eigenvalues {bj}p

j=1 such that

A0ek = bkek,

where bj > 0,∀j. Then we can write A0 =
∑p

j=1 bjej ⊗ ej and write

P [||A − A0||L(1)
< ǫ] = P [||

∞∑

j=1

wjZj ⊗ Zj −
p∑

j=1

bjej ⊗ ej||L(1)
< ǫ]

≥ P [||
∞∑

j=n+1

wjZj ⊗ Zj||L(1)
<

ǫ

3
] ·

n∏

j=p+1

P [||wjZj ⊗ Zj||L(1)
<

ǫ

3(n − p)
]

·
p∏

j=1

P [||wjZj ⊗ Zj − bjej ⊗ ej||L(1)
<

ǫ

3p
] (6.9)

Now we show that all the three factors in (6.9) are strictly positive.

(a)

P [||
∞∑

j=n+1

wjZj ⊗ Zj||L(1)
<

ǫ

3
] = 1 − P [||

∞∑

j=n+1

wjZj ⊗ Zj||L(1)
≥ ǫ

3
]

≥ 1 − 3

ǫ
E[||

∞∑

j=n+1

wjZj ⊗ Zj||L(1)
]

= 1 − 3

ǫ
E[

∞∑

j=n+1

wj|Zj|2].

Since
∑∞

j=1 wj|Zj|2 converge a.s., we can take n > p and n large enough

so that
∑∞

j=n+1 wj|Zj|2 < ǫ/6. Therefore,

P

[
||

∞∑

j=n+1

wjZj ⊗ Zj||L(1)
<

ǫ

3

]
> 1 − 3

ǫ

ǫ

6
=

1

2
> 0
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(b) For p < j ≤ n,

P [||wjZj ⊗ Zj||L(1)
<

ǫ

3(n − p)
] = P

[
wj|Zj|2 <

ǫ

3(n − p)

]

= P

[
|Zj|2 <

ǫ

3wj(n − p)

]
> 0

by the fact that Zj is fully supported on the whole Hilbert space H (Propo-

sition 6.2.4).

(c) For j ≤ p, we show that the map from (
√

wj/bjZj − ej, | · |) to (wj/bjZj ⊗

Zj − ej ⊗ ej, || · ||L(1)
) is continuous so that ∀ǫ/(3p) > 0, there exists δ > 0

such that

|√wjZj −
√

bjej| < δ =⇒ ||wjZj ⊗ Zj − bjej ⊗ ej||L(1)
<

ǫ

3p
.

Let Z̃ =
√

wj/bjZj, and let (ei) be the orthonormal basis of H extended
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from the eigen-basis of B, then

||wjZj ⊗ Zj − bjej ⊗ ej||L(1)
=

∞∑

i=1

|〈wjZj ⊗ Zj − bjej ⊗ ejei, ei〉|

=
∞∑

i=1

|wj〈Zj, ei〉2 − bj〈ej, ei〉2| = bj

∞∑

i=1

|〈Z̃, ei〉2 − 〈ej, ei〉2|

= bj

(∑

i6=j

〈Z̃, ei〉2 + |〈Z̃, ej〉2 − 〈ej, ej〉2|
)

= bj

(
|Z̃ − 〈Z̃, ej〉ej|2 + |〈Z̃, ej〉 + 〈ej, ej〉||〈Z̃, ej〉 − 〈ej, ej〉|

)

≤ bj

(
|Z̃ − ej|2 + |〈Z̃ + ej, ej〉||〈Z̃ − ej, ej〉|

)

≤ bj

(
|Z̃ − ej|2 + (|Z̃ − ej| + |2ej|)|Z̃ − ej||ej|2

)

≤ bj

(
δ2

bj

+ (
δ√
bj

+ 2)
δ√
bj

)

= 2δ2 + 2
√

bjδ. (note |√wjZj −
√

bjej| < δ =⇒ |Z̃ − ej| <
δ√
bj

)

Therefore, we can let δ be small enough so that ||wjZj⊗Zj−bjej⊗ej||L(1)
<

ǫ
3p

. Hence

P [||wjZj ⊗ Zj − bjej ⊗ ej||L(1)
<

ǫ

3p
] > P [|√wjZj −

√
bjej| < δ] > 0,

by the fact that Zj is fully supported on the whole H space.

In summary, (a)-(c) show that all components in (6.9) are strictly positive.

Thus the theorem has been proved for A0 being finite rank.

2. If A0 is not finite rank, the set of finite rank L+
(1)(H)-operators is dense in

L+
(1)(H), ∀ǫ > 0, so the ǫ-neighborhood of B contains at least one finite rank
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operator, say Ak. Let ||A0 − Ak||L(1)
= r, then

{||A − Ak||L(1)
<

r

2
} ⊂ {||A − A0||L(1)

< ǫ}.

Hence P{||A−A0||L(1)
< ǫ} > P{||A−Ak||L(1)

< r
2
} > 0. By 1. and 2., we have

shown that the random operator A =
∑∞

j=1 wjZj ⊗Zj is fully supported on the

whole space of L+
(1)(H).

6.4 A Markov Chain Monte Carlo

In this section, we restrict the separable Hilbert space H to be L2(T ) where T = [0, 1].

A random element X taking values in H is called a stochastic process and is usually

denoted by X(t). Suppose there are n such random processes {Xi(t)}n
i=1, which are

i.i.d. with Gaussian measure µm, Σ, where m is the mean and Σ is the covariance

operator such that Ker(Σ) = {0}. We construct a prior for Σ using the expansion in

(6.4). The likelihood and priors are:

Xi(t) | m, Σ ∼ µm, Σ, (6.10)

m | Σ ∼ µ0, kΣ, (6.11)

Σ = c
∞∑

j=1

wjZj ⊗ Zj, (6.12)

Zj(t) ∼ µ0, B, (6.13)

c ∼ Inv-χ2(da, db). (6.14)
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Here k, B, da and db are pre-specified prior parameters, and Inv-χ2(ν, s2) represents

a scaled inverse chi-square distribution with density function:

f(x; ν, s2) =
(s2ν/2)ν/2

Γ(ν/2)
x−ν/2−1 exp{−νs2

2x
}. (6.15)

Note that an Inv-χ2(ν, s2) is equivalent to an Inv-Gamma with (ν/2, νs2/2). Here

da = ν, db = s2. We assume that Zj(t)’s are independent Gaussian with zero mean

and known covariance operator B. The operation Zj ⊗ Zj is defined as

(Zj ⊗ Zj)h(t) = Zj(t)〈Zj(s), h(s)〉 = Zj(t)

ˆ

T

Zj(s)h(s)ds. (6.16)

We also assume that the scaling parameter c is independent of Zj(t)’s.

The posterior inference based on the above likelihood and priors can be conducted

using finite dimensional projection, which is discussed in detail in the following sec-

tion.

6.4.1 Derivations of the Posterior Distribution

Based on the likelihood and prior settings from (6.10) to (6.14), we can do poste-

rior inference by projecting Xi(t)’s on a finite grid Tp = (t1, . . . , tp)
T . Denote the

discretized version of Xi(t) as ~Xi = ( ~Xi(t1), . . . , ~Xi(tp))
T , ~X provides an approxima-

tion for Xi(t) as p approaches infinity. After discretization, the covariance operator

Σ becomes a p by p covariance matrix ~Σ, and the likelihood in (6.10) becomes a

multivariate normal with density

π( ~X|~m, ~Σ) ∝ |~Σ|−n
2 exp

{
−1

2

n∑

i=1

( ~Xi − ~m)T ~Σ−1( ~Xi − ~m)

}
, (6.17)
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where ~X = ( ~X1, . . . , ~Xn)T and ~m is the discretized mean. The expansion in (6.12)

can be approximated by first projecting Zj(t)’s on Tp, then truncating the infinite

sum at a fixed number J . According GRIP in Section 6.1, if we let J −→ ∞ and

p −→ ∞, then our posterior should converge to the “functional posterior” obtained

from (6.10)-(6.14). We write the approximated version of the priors in (6.11)-(6.13)

as follows:

~m | ~Σ ∼ N(0, k~Σ),

~Σ = c
J∑

j=1

wj
~Zj

~ZT
j ,

~Zj ∼ N(0, ~B).

(6.18)

Here N(·, ·) represents multivariate normal distribution. After finite dimensional

projections of the likelihood and priors, we obtain the posterior in multivariate form

as follows:

π(~m, ~Σ| ~X) ∝ π( ~X|~m, ~Σ)π(~m|~Σ)π(~Σ)

∝ |~Σ|−n
2 exp

{
−1

2

n∑

i=1

( ~Xi − ~m)T ~Σ−1( ~Xi − ~m)

}

· |k~Σ|− 1
2 exp

{
−1

2
~mT (k~Σ)−1 ~m

}
π(~Σ).

(6.19)

We now integrate out ~m from the above joint posterior to obtain the marginal poste-

rior of ~Σ by π(~Σ| ~X) =
´

π(~m, ~Σ| ~X)d~m. Note that we can reformulate the quadratic

terms in (6.19) to get:

π(~m, ~Σ| ~X) ∝ |~Σ|−n
2 |k~Σ|− 1

2 π(~Σ)

· exp

{
−1

2

[
~mT
(
n~Σ−1 + (k~Σ)−1

)
~m − 2~mT ~Σ−1

(
n∑

i=1

~Xi

)
+

n∑

i=1

~XT
i
~Σ−1 ~Xi

]}
.
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Let K1 = n~Σ−1 + (k~Σ)−1 = (n + 1
k
)~Σ−1 and M1 = ~Σ−1

(∑n
i=1

~Xi

)
, the multivariate

normal density in the above expression can be split as:

π(~m, ~Σ| ~X) ∝ |K−1
1 |− 1

2 exp

{
−1

2

(
~m − K−1

1 M1

)T
K1

(
~m − K−1

1 M1

)}

· |K−1
1 | 12 |~Σ|−n

2 |k~Σ|− 1
2 exp

{
−1

2

n∑

i=1

~XT
i
~Σ−1 ~Xi +

1

2
MT

1 K−1
1 M1

}
π(~Σ). (6.20)

The first two factors can be integrated out w.r.t. ~m since they form a multivariate

normal density. This gives the resulting marginal posterior as

π(~Σ| ~X) ∝ |K−1
1 | 12 |~Σ|−n

2 |k~Σ|− 1
2 exp

{
−1

2

n∑

i=1

~XT
i
~Σ−1 ~Xi +

1

2
MT

1 K−1
1 M1

}
π(~Σ).

The above form can be further simplified by combining the |~Σ| terms, drop the con-

stant terms, and using the simplified terms of

K1 = (n +
1

k
)(~Σ)−1

and

MT
1 K−1

1 M1 = (n +
1

k
)−1

(
n∑

i=1

~Xi

)T

~Σ−1

(
n∑

i=1

~Xi

)
.

The simplified form is

π(~Σ| ~X) ∝

exp



−1

2

n∑

i=1

~XT
i
~Σ−1 ~Xi +

1

2
(n +

1

k
)−1

(
n∑

i=1

~Xi

)T

~Σ−1

(
n∑

i=1

~Xi

)
 |~Σ|−n

2 π(~Σ).

(6.21)

Note that in (6.21) the prior for ~Σ has not been given a particular form yet. If

we write ~Z = (~Z1, ~Z2, . . . , ~ZJ)T , according to the prior assumption in (6.18), ~Σ is a
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deterministic function of c and ~Z. Thus ~Σ can be replaced by c and ~Z in the likelihood

and the conditional prior π(~m|~Σ). Instead of setting up prior for ~Σ, we set up priors

for ~Z as

π(~Z) = π(c)
J∏

j=1

π(~Zj)

∝ c−da/2−1 exp{−dadb

2c
} exp{−1

2

J∑

j=1

~ZT
j

~B−1 ~Zj}

The posterior samples of ~Z can be used to construct samples for ~Σ. To get the joint

posterior distribution for c and ~Z, we just need to replace π(~Σ) by π(~Z) in (6.21),

and replace other terms of ~Σ by the linear expansion in (6.18), which gives

π(c, ~Z| ~X) ∝
∣∣∣∣∣c

J∑

j=1

wj
~Zj

~ZT
j

∣∣∣∣∣

−n
2

c−da/2−1 exp{−dadb

2c
} exp

{
−1

2

J∑

j=1

~ZT
j

~B−1 ~Zj

}

· exp



−1

2

n∑

i=1

~XT
i

(
c

J∑

j=1

wj
~Zj

~ZT
j

)−1

~Xi





· exp





1

2
(n +

1

k
)−1

(
n∑

i=1

~Xi

)T (
c

J∑

j=1

wj
~Zj

~ZT
j

)−1( n∑

i=1

~Xi

)
 .(6.22)

The above posterior distribution can be simplified once more by integrating c out.

Separate all the terms containing c:

π(c, ~Z| ~X) ∝ c−
np+da

2
−1 exp{−Ã − B̃ + dadb

2c
}

·
∣∣∣∣∣

J∑

j=1

wj
~Zj

~ZT
j

∣∣∣∣∣

−n
2

exp

{
−1

2

J∑

j=1

~ZT
j

~B−1 ~Zj

}
, (6.23)

where

Ã =
n∑

i=1

~XT
i

(
J∑

j=1

wj
~Zj

~ZT
j

)−1

~Xi (6.24)
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and

B̃ = (n +
1

k
)−1

(
n∑

i=1

~Xi

)T ( J∑

j=1

wj
~Zj

~ZT
j

)−1( n∑

i=1

~Xi

)
. (6.25)

The first two factors in (6.23) indicate that, conditional on ~Z, c is Inv-χ2(v1, v2),

where v1 = np + da and v2 = (Ã − B̃ + dadb)/v1. Therefore we can integrate them

out, which gives:

π(~Z| ~X) ∝
(

Ã − B̃ + dadb

np + da

)−np+da
2
∣∣∣∣∣

J∑

j=1

wj
~Zj

~ZT
j

∣∣∣∣∣

−n
2

exp

{
−1

2

J∑

j=1

~ZT
j

~B−1 ~Zj

}

∝
(
Ã − B̃ + dadb

)−np+da
2

∣∣∣∣∣
J∑

j=1

wj
~Zj

~ZT
j

∣∣∣∣∣

−n
2

exp

{
−1

2

J∑

j=1

~ZT
j

~B−1 ~Zj

}
(6.26)

Based on the above posterior distribution, we describe our MCMC algorithm below.

In this algorithm, N is a pre-defined maximum number of iterations, i is the iteration

index and we write θ(i) as the posterior sample for parameter θ in iteration i.

Step 0. Set initial values for ~Zj, j = 1, . . . J .

For i = 1, . . . , N , run Step 1-3.

Step 1. Conditional on ~X, update ~Z = (~Z1, . . . , ~Z1)
T . For j = 1, . . . , J , sample a

new observation from the proposal distribution ~Z∗
j ∼ N(~Z

(i−1)
j , δI), and

calculate

r =
π(~Z

(i)
1 , . . . , ~Z

(i)
j−1,

~Z∗
j , ~Z

(i−1)
j+1 , . . . , ~Z

(i−1)
J | ~X)

π(~Z
(i)
1 , . . . , ~Z

(i)
j−1,

~Z
(i−1)
j , ~Z

(i−1)
j+1 , . . . , ~Z

(i−1)
J | ~X)

.

Note that the numerator and the denominator can be computed using

(6.26). Update ~Z
(i)
j = ~Z∗

j with probability min(1, r).
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Step 2. Conditional on ~Z(i) and ~X, sample c(i) from π(c|~Z, ~X) = inv−χ2(v1, v2),

where v1 = np + da and v2 = (Ã − B̃ + dadb)/v1, where Ã and B̃ are

defined in (6.24) and (6.25).

Step 3. Conditional on ~Z(i), c(i) and ~X, sample ~m(i) from N(µ0, V0) distribution,

where

µ0 = K−1
1 M1 = (n +

1

k
)−1

(
n∑

i=1

~Xi

)

and

V0 = K−1
1 = (n +

1

k
)−1~Σ = (n +

1

k
)−1c

J∑

j=1

wj
~Zj

~ZT
j .

This conditional distribution can be easily observed from the joint distri-

bution (6.20).

6.4.2 Notes on Some Computational Tricks

This section collects some computational tricks which are helpful to improve the

MCMC algorithm. We focus on the posterior distribution derived in (6.26). Since

the variables are all in discretized form, for simplicity, we remove the vector symbol

(the arrow on top of a variable), i.e., X and Z are the same as ~X and ~Z defined

in Section 6.4.1. Note that X is a n × p data matrix with each row a discretized

functional observation, and Z is a J × p matrix with the jth row being ZT
j .
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NOTE 1. Let W = diag(
√

w1, . . . ,
√

wJ),

WZ =




√
w1

√
w2

. . .

√
wJ







ZT
1

ZT
2

...

ZT
J




=




√
w1Z

T
1

√
w2Z

T
2

...

√
wJZT

J




.

Therefore
∑J

j=1 wj
~Zj

~ZT
j = (WZ)T (WZ). In real computation, this is done by per-

forming QR decomposition for WZ so that WZ = QR, where Q is a matrix with

orthonormal columns and R is a upper triangular matrix. Note that such a decom-

position always exists, see, for example, Trefethen and Bau [74]. Now the linear

expansion becomes

J∑

j=1

wj
~Zj

~ZT
j = (WZ)′(WZ) = R′Q′QR = R′R.

Hence the covariance expansion in (6.18) becomes ~Σ = c
∑J

j=1 wj
~Zj

~ZT
j = cR′R. Note

that
√

cR is the Cholesky decomposition of the covariance matrix ~Σ. In each iteration,

the MCMC algorithm updates the rows of WZ one by one using the built-in functions

qrdelete and qrinsert of MATLAB (The Math works, Inc., Natick, Mass., U.S.A.)

NOTE 2. For the factor exp
{
−1

2

∑J
j=1

~ZT
j

~B−1 ~Zj

}
in (6.26). To compute matrix

inversion B−1 efficiently, we first perform cholesky decomposition for B, i.e. RT
1 R1 =

B for some upper triangular matrix R1. Then B−1 is obtained by

B−1 = (RT
1 R1)

−1 = R−1
1 (RT

1 )−1 = R−1
1 (R−1

1 )T .

So ~ZT
j

~B−1 ~Zj = ((R−1
1 )T Zj)

T ((R−1
1 )T Zj).
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NOTE 3. For the term

n∑

i=1

~XT
i

(
c

J∑

j=1

wj
~Zj

~ZT
j

)−1

~Xi,

we have seen from NOTE 1 that the Cholesky decomposition of the middle term

c
∑J

j=1 wj
~Zj

~ZT
j is

√
cR. Let T = ((

√
cR)−1)T XT , and write T = (T1, . . . , Tn), where

Ti are the columns of T , we have

n∑

i=1

~XT
i

(
c

J∑

j=1

wj
~Zj

~ZT
j

)−1

~Xi =
∑

i

T T
i Ti = Trace(T T T ).

For the same T ,

(
n∑

i=1

~Xi

)T (
c

J∑

j=1

wj
~Zj

~ZT
j

)−1( n∑

i=1

~Xi

)
= (
∑

i

Ti)
T (
∑

i

Ti).

6.4.3 Simulation Results

Based on the prior proposed in Section 6.3 and the MCMC algorithm proposed in

Section 6.4, we conduct a simulation study in this section. Our data come from

n = 50 Brownian Motion paths on a time grid of [0, 1], with the number grid points

p = 60. Note that the covariance function of the Brownian Motion is K(s, t) =

min(s, t), s, t ∈ [0, 1]. Figure 6.1 shows the plot of the sample paths and Figure 6.2

shows the corresponding true covariance function.

The proposed MCMC in Section 6.4 is applied to the simulated data, with 10000

iterations and a 4000 burn-in period. We set the parameters in the priors and other

related parameters to be: k = 100, da = 4.01, db = 10, δ = 0.005, J = 150. Initial
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Figure 6.1: Plot of N = 50 sample paths of a Brownian Motion.
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Figure 6.2: The true covariance function of Brownian Motion.
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Figure 6.3: The plot of prior parameter wj.

values of Zj’s are generated from normal distribution with zero mean and identity

covariance. For the weight wj, we use the following form:

wj = (1 + (
j

α
)q)−1, j = 1, . . . , J,

where α = 100, q = 10 for this simulation study. The values of wj’s are plotted in

Figure 6.3. The prior covariance for Zj is set to be

B(ti, tj) = exp(−0.6145|ti − tj|1/2). (6.27)

Figure 6.4 shows the plot of the prior covariance B. We use the posterior Zj samples in

each iteration to compute the posterior ~Σ samples, and average the posterior samples

of ~Σ to obtain the final estimate. Figure 6.5 plots the posterior sample average of ~Σ.

The trace plot of the posterior samples of c, together with its histogram, is shown in

Figure 6.6. Figure 6.7 shows the posterior mean of ~m and its 95% credible interval.

The acceptance rates of the Zj’s is between 22% and 39%.
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Figure 6.4: The prior covariance function for Zj, j = 1, . . . , J .
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Figure 6.5: The posterior mean of the covariance function using the proposed prior.
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Figure 6.6: The trace plot of the posterior samples of c and its histogram.

To compare the estimated covariance function with the true, we use two metrics

for measuring the estimation error. One is the averaged squared-error(ASE) defined

by

ASE(Σ̂, Σ) =
1

p2

∑

i

∑

j

(σ̂2
ij − σ2

ij)
2, (6.28)

where σ̂ij, σij is the (i, j)th component of the estimated and true covariance matrix,

respectively. The second metric is called the averaged absolute error (AL1E) defined

by

AL1E(Σ̂, Σ) =
1

p2

∑

i

∑

j

|σ̂2
ij − σ2

ij|. (6.29)

Table 6.1 lists the estimation error coming from the Bayesian estimate using the prior
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Figure 6.7: The posterior mean of the mean function µ(t) and its 95% credible interval.

proposed in Section 6.3, and from the sample estimate, where the sample estimate

Σ̂sample is obtained by

1

n − 1

n∑

i=1

( ~Xi − X̄)( ~Xi − X̄)T . (6.30)

We see from Table 6.1 that, using the suggested MCMC algorithm, the Bayes estimate

based on the proposed prior gives slightly smaller error than the sample estimate.

More details of the estimation error are illustrated in Figure 6.8 and Figure 6.9,

where we plot (σ̂2
ij − σ2

ij) at all (i, j) pairs for both estimation methods.
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Method ASE AL1E
Bayes estimate using proposed prior 0.0129 0.0881
Sample estimate 0.0193 0.1146

Table 6.1: The Estimation Error Comparison.
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Figure 6.8: Plot of the Component-wise Estimation Error for the Covariance Matrix
using the Bayesian Method.
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6.5 Inverse-Wishart Prior and its limiting Behav-

ior

In order to look for appropriate priors for covariance operators in infinite-dimensional

setup, we study the limiting behavior of Inverse-Wishart prior as the dimension (i.e.,

the number of grid points) goes to infinity. It is not clear whether there exists an

infinite-dimensional counterpart of Inverse-Wishart distribution. We start from de-

riving the limits of the first two moments of multivariate Inverse-Wishart distribution

in this section.
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6.5.1 Definition and Some Facts about Wishart and Inverse

Wishart distribution

We first give the definition of Wishart and Inverse Wishart distribution in multivariate

setup.

(1) Wishart distribution. Let Σ be a p by p positive definite and symmetric random

matrix. We say Σ is of Wishart distribution with degree of freedom ν and scale

matrix S, and write Σ ∼ Wishart(ν, S), if the pdf of Σ is

f(Σ|ν, S) =

(
2νp/2πp(p−1)/4

p∏

i=1

Γ(
ν + 1 − i

2
)

)−1

|S|−ν/2|Σ|(ν−p−1)/2 exp(−1

2
tr(S−1Σ))

where ν ≥ p + 1, S is positive definite and symmetric. It can be shown that

E[Σ] = νS, mode(Σ) = (ν−p−1)S for ν > p+1, and the characteristic function

φ(U) = E[exp(i · tr(ΣU))] = |I − 2iUS|−ν/2, where I and U are matrices of the

same size of S.

(2) Inverse-Wishart distribution. Suppose Σ is a p × p positive definite random

matrix, Σ ∼ IW (ν, S) with d.f. ν and scaling matrix S, if

f(Σ|ν, S) =

(
2νp/2πp(p−1)/4

p∏

i=1

Γ(
ν + 1 − i

2
)

)−1

|S|ν/2|Σ|−(ν+p+1)/2 exp(−1

2
tr(SΣ−1)).

It can be shown that E[Σ] = 1
ν−p−1

S. (Note that some literature denote Σ ∼

IW (ν, S−1) for the same density stated above. The form of the density functions

will be clear if one indicates the form of E[Σ]).
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(3) Relation of Wishart and Inverse Wishart distribution. If A ∼ Wishart(ν, S), by

change of variables, we can easily show that A−1 ∼ IW (ν, S−1) with E[A−1] =

1
ν−p−1

S−1. Note: the Jacobian | ∂A
∂A−1 | = |A|m+1.

(4) Moments of Inverse-Wishart Matrix. Siskind [69] stated the following results

about the general second-order moment of an Inverse-Wishart matrix: if t is a

p × 1 constant vector, A is a p × p Wishart matrix with ν > p + 3 degree of

freedom and expectation νS (i.e., A ∼Wishart(ν, S), by (3), A−1 ∼ IW(ν, S−1)

with E[A−1] = 1
ν−p−1

S−1), so

(ν − p)(ν − p − 3)E[A−1ttT A−1] = S−1ttT S−1 + S−1(tT S−1t)/(ν − p − 1),

i.e., E[A−1ttT A−1] = S−1ttT S−1

(ν−p)(ν−p−3)
+ S−1(tT S−1t)

(ν−p−1)(ν−p)(ν−p−3)
.

6.5.2 Conjugate Inverse Wishart Priors for the Covariance

in Multivariate Normal Model

Suppose Xi, i = 1, . . . , n, are i.i.d. normally distributed random vectors with unknown

mean m and unknown variance matrix Σ. If we construct a Bayesian model as:

π(Xi|m, Σ) = N(m, Σ),

π(m|Σ) = N(m0, 1/k0Σ), (6.31)

π(Σ) = IW(ν0, Λ0), (6.32)

the resulting posterior distribution

π(Σ|X1, . . . , Xn) = IW(ν̃, Λ̃),
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where ν̃ = ν0+n, Λ̃ = Λ0+Sn+ nk0

n+k0
(X̄−m0)(X̄−m0)

T , Sn =
∑n

i=1(Xi−X̄)(Xi−X̄)T .

Therefore

E[Σ|X1, . . . , Xn] = 1/(ν̃ − m − 1)Λ̃, (6.33)

and conditional on Σ, we have π(m|Σ, X1, . . . , Xn) = N(m̃, Ṽ ), where m̃ = n
n+k0

X̄ +

k0

n+k0
m0 and Ṽ = 1

n+k0
Σ.

6.5.3 A Simulation Study using the Bayesian Model with

Conjugate Inverse-Wishart Prior

In Section 6.4.3, we conducted a simulation to estimate the covariance of Brownian

Motions using priors proposed in Section 6.3. In comparison, the simulation is re-

peated in this simulation by using the Bayesian model stated in Section 6.5.2. We

set the scaling matrix Λ0 in (6.32) to be the prior matrix B used in (6.27), and set

the other two prior parameters in (6.32) and (6.31) as ν0 = 65 and k0 = 1/106, re-

spectively. The prior m0 is set to be a zero vector. For the same data generated in

Section 6.4.3, we obtain 3000 posterior samples for Σ and use their average as the

final estimate. Alternatively, since the posterior mean has an explicit form (as shown

in (6.33)), we can also compute the posterior mean directly and use it as the estimate

of Σ. In Table 6.2, the estimation errors defined by (6.28) and (6.29) are computed

for both the sample average and the posterior mean. Comparing with Table 6.1, we

find that for this simulated data, the estimation error obtained from Inverse-Wishart

prior is very similar to that from the prior proposed in Section 6.3, and both estima-
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Method MSE ML1E
Bayesian estimate (IW prior, based on 3000 sample) 0.0126 0.0929
Bayesian estimate (IW prior, the posterior mean) 0.0123 0.0917
Sample estimate 0.0193 0.1146

Table 6.2: The estimation error of the Bayes model with Inverse-Wishart prior com-
pare with that of the sample estimate.
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Figure 6.10: The posterior average of the covariance using the Bayesian model with
an Inverse-Wishart prior.

tion methods give slightly smaller estimation error than the sample estimate. The

posterior mean estimate is plotted in Figure 6.10.

As the number of grid points increases, the estimation error (defined in 6.28 and

6.29) using inverse Wishart prior is supposed to increase too. To show this, we

generate n = 50 Brownian Motion paths on [0, 1] but sample them at 3 different grid

levels with the number of grid points: 11, 101 and 1000. Figure 6.11 plots the first

Brownian Motion path at all three grid levels. We set the prior parameter ν0 = 2p and
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Figure 6.11: One Brownian Motion path sampled at three grid levels: p=50,100,1000.

k0 = 1/103. The estimation errors of the sample estimates and the Bayesian estimates

with inverse-Wishart prior at all grid levels are listed in Table 6.3, which suggests

that the estimating errors increase as p increases, and the estimating error of Bayes

estimates (with Inverse-Wishart prior) increases faster than the sample estimates.

p Bayes Est.(IW prior) Sample Estimate
ASE AL1E ASE AL1E

10 0.0023 0.0392 0.0048 0.0581
100 0.0314 0.1303 0.0057 0.0647
1000 0.1339 0.2965 0.0058 0.0655

Table 6.3: The estimation error comparison (IW prior) when the sampling grid gets
finer.
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6.5.4 Limiting Behavior of the First Two Moments of the

Inverse-Wishart Distribution

Suppose that the covariance operator Σ ∈ L+
(1)(H) and H = L2[0, 1]. We have

Σ : L2[0, 1] 7−→ L2[0, 1]

and for any f ∈ L2[0, 1],

Σf(s) =

ˆ 1

0

k(s, t)f(t)dt,

where k(·, ·) is the covariance kernel of Σ. Denote the discretized version of Σ on a

finite grid as ~Σp, which is a random matrix of size p, where p is the number of grid

points. Our purpose is to find conditions such that, as p → ∞, the limiting covariance

operator maps any function on [0, 1] to some function with a non-degenerate measure.

Let ~Σp ∼ IW (νp, ~Bp). We write the discretized version of f as ~fp = (f(t1), . . . , f(tp))
T .

~fp can be used to approximate f by linear interpolation over the grid. Let ~gp = ~Σp
~fp,

we will find the first two moments of ~gp and investigate their limits as p → ∞. Since

~Σp ∼ IW(νp, ~Bp), we have

E[~Σp] =
~Bp

νp − p − 1
(6.34)

and

E[~ΣpxxT ~Σp] =
~BpxxT ~Bp

(νp − p)(νp − p − 3)
+

~Bp(x
T ~Bpx)

(νp − p − 1)(νp − p)(νp − p − 3)
, (6.35)
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for all x ∈ Rp, by our previous definition of Inverse Wishart in Section 6.5.1. For the

first moment of ~gp,

E[~gp] = E[~Σp
~fp] =

~Bp
~fp

νp − p − 1

by (6.34). Suppose that ~Bp is the discretization of a covariance operator B with

kernel b(s, t),

(E[~gp])i =
1

(νp − p − 1)

p∑

j=1

( ~Bp)ij(~fp)j

=
1

(νp − p − 1)

p∑

j=1

b(ti, tj)f(tj)

=
p

(νp − p − 1)

p∑

j=1

b(ti, tj)f(tj)
1

p
.

Therefore, E[~gp(s)] −→ Bf(s) =
´ 1

0
b(s, t)f(t)dt as p → ∞, provided that p

νp−p−1
→

1. For the second moment of ~gp,

E[~gp~g
T
p ] = E[~Σp

~fp
~fT
p

~Σp] =
~Bp

~fp
~fT
p

~Bp

(νp − p)(νp − p − 3)

+
~Bp(~fT

p
~Bp

~fp)

(νp − p − 1)(νp − p)(νp − p − 3)
, (6.36)

by (6.35). For the first term of (6.36), since

( ~Bp
~fp

~fT
p

~Bp)ij =( ~Bp
~fp)i( ~Bp

~fp)j

=(

p∑

l=1

b(ti, tl)f(tl))(

p∑

τ=1

b(tj, tτ )f(tτ ))

=p2(

p∑

l=1

b(ti, tl)f(tl)
1

p
)(

p∑

τ=1

b(tj, tτ )f(tτ )
1

p
),

we have

~Bp
~fp

~fT
p

~Bp

(νp − p)(νp − p − 3)
−→ Bf ⊗ Bf
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as p → ∞, provided that p2

(νp−p)(νp−p−3)
→ 1. Note that we have defined the ⊗

operation in (6.5) and (6.16). Here Bf ⊗ Bf is defined in a similar way, i.e., (Bf ⊗

Bf)x = Bf〈Bf, x〉, and 〈Bf, x〉 =
´ 1

0
Bf(s)x(s)ds. For the second term of (6.36),

~fT
p

~Bp
~fp =

p∑

i=1

f(ti)(

p∑

j=1

b(ti, tj)f(tj))

= p2

p∑

i=1

p∑

j=1

f(ti)b(ti, tj)f(tj)
1

p2

where
∑p

i=1

∑p
j=1 f(ti)b(ti, tj)f(tj)

1
p2 −→

´ 1

0

´ 1

0
f(s)b(s, t)f(t)dtds = 〈f,Bf〉, as p →

∞. Therefore, for any x ∈ L2[0, 1] with a discretized version ~xp = (x(t1), . . . , x(tp))
T ,

1

(νp − p − 1)(νp − p)(νp − p − 3)
( ~Bp(~fT

p
~Bp

~fp)~xp)l

=
p3

(νp − p − 1)(νp − p)(νp − p − 3)
(

p∑

i=1

p∑

j=1

f(ti)b(ti, tj)f(tj)
1

p2
)(

p∑

τ=1

b(tl, tτ )x(tτ )
1

p
)

−→ 1 · 〈f,Bf〉Bx(tl)

as p → ∞, provided that p3

(νp−p−1)(νp−p)(νp−p−3)
→ 1. Thus the second term of (6.36)

satisfies

~Bp(~fT
p

~Bp
~fp)

(νp − p − 1)(νp − p)(νp − p − 3)
−→ 〈f,Bf〉B.

The above results shows that E[~gp] → Bf and E[~gp~g
T
p ] → Bf ⊗ Bf + 〈f,Bf〉B

under the condition that p
νp−p

→ 1. This implies

Cov(~gp) = E[~gp~g
T
p ] − E[~gp]E[~gp]

T

−→ Bf ⊗ Bf + 〈f,Bf〉B − Bf ⊗ Bf,

hence Cov(~gp) → 〈f,Bf〉B as p → ∞.
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To summarize, we have obtained the limit of the first two moments of ~gp = ~Σp
~fp.

As the number of grid points p → ∞ and p
νp−p

→ 1, we have

E[~Σp
~fp) −→ Bf,

Cov(~Σp
~fp) −→ 〈f,Bf〉B.



Chapter 7

Conclusion and Discussion

In summary, we have proposed three statistical models on the topic of functional data

classification, and presented a study on the covariance operator of functional data

analysis. We compare the results from previous chapters and discuss some related

issues in this chapter.

The Bayesian variable selection model proposed in Chapter 3 provides good classi-

fication performance compared with several other methods without variable selection.

The functional predictors are approximated using orthonormal basis expansion, and

variable selection is performed based on the coefficients of the orthonormal basis.

This model is novel as a functional data classification method, however, it also has

some drawbacks. First, the variable selection results depend on different choices of

the orthonormal basis. Second, the variables selected are usually hard to explain

and visualize in the original function space. Orthonormal basis such as Wavelets can

152
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preserve some location information, therefore may improve the model and make it

easier to explain.

The functional generalized linear model (FGLM) in Chapter 4 and the Bayesian

hierarchical model in Chapter 5 both aim to select a subset of functional predictors in

order to reduce the cost of data collection in the cervical cancer diagnosis application.

However, the selection results reported in Chapter 4 are not comparable with those in

Chapter 5 due to the fact that the FGLM model does not consider random effects, and

the real data managed by FGLM are a subset of the whole dataset that are measured

by a fixed device (and clinic). To compare FGLM with the Bayesian hierarchical

model on their predictor selection performance, we re-trained the FGLM model based

on all data and ignore the random effect. Figure 7.1 plots the predictor selection

result of FGLM using all data together with the marginal posterior of τ obtained

in Chapter 5. Note that these two results are both based on the FPC method with

approximation criterion c1 = 0.998. Although Figure 7.1(a) and Figure 7.1(b) have

different explanation for their own model, they show some similarities on the selection

of functional predictors, i.e., the curves with excitation wavelengths at around 340-

360, 400-420, 470-480nm have higher possibilities of being selected.

Finally, for the study of the covariance operator, besides the results obtained in

Chapter 6, there are more theoretical work that worth further investigation. First, the

consistency of the posterior needs to be constructed based on the priors introduced

in Section 6.3. Second, more computationally efficient MCMC algorithms need to
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be developed to deal with data with large number of grids. It is also of interest to

look for the infinite-dimensional counterpart for the Inverse-Wishart distribution and

construct priors from there. Continuation of the covariance operator research will

certainly enrich the field of functional data analysis.



Appendix A

Integrating bl’s, b0 and α Out

Sequentially from the Conditional

Posterior (5.10).

From conditional posteriors in (5.10) and priors in (5.2) and (5.9), we have

π(α, b1, . . . , bL, b0, σ
2
b , τ |Zl, Yl, l = 1, . . . , L)

∝
∏

l

|K−1
l |−1/2 exp

{
−1

2

∑

l

(
bT
l Klbl − 2bT

l Ml + MT
l K−1

l Ml

)
}

· exp

{
1

2

∑

l

[
MT

l K−1
l Ml − (Zl − Slα)T (Zl − Slα)

]
}

· exp

{
−1

2
bT
0

[
L(σ2

bΣτ )
−1 + (σ2

0Στ )
−1
]
b0

}

· exp

{
−1

2
αT (σ2

1I)−1α

}
(
∏

l

|K−1
l |1/2)|σ2

bΣτ |−L/2|σ2
0Στ |−1/2π(σ2

b )π(τ),
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where Kl = CT
l Cl+(σ2

bΣτ )
−1 and Ml = CT

l (Zl−Slα)+(σ2
bΣτ )

−1b0, l = 1, . . . , L. From

above, we find the conditional distribution bl|α, b0, σ
2
b , τ, Zl, Yl ∼ N(µl, Vl), where

µl = K−1
l Ml and Vl = K−1

l , for l = 1, . . . , L. The bl’s can be integrated out from

the above conditional posterior since the first 2L factors construct L normal density

kernels. After integrating out bl’s, we can expand MT
l K−1

l Ml and combine the terms

with b0, which gives the following:

π(α, b0, σ
2
b , τ |Zl, Yl, l = 1, . . . , L)

∝ |K−1
0 |−1/2 exp

{
−1

2

(
bT
0 K0b0 − 2bT

0 M0 + MT
0 K−1

0 M0

)}

· exp

{
1

2
MT

0 K−1
0 M0 +

1

2

∑

l

(Zl − Slα)T (ClK
−1
l CT

l − I)(Zl − Slα)

}

· exp

{
−1

2
αT (σ2

1I)−1α

}
|K−1

0 |1/2(
∏

l

|K−1
l |1/2)|σ2

bΣτ |−L/2|σ2
0Στ |−1/2π(σ2

b )π(τ),

where K0 = (σ2
0Στ )

−1 + L(σ2
bΣτ )

−1 − (σ2
bΣτ )

−1(
∑
l

K−1
l )(σ2

bΣτ )
−1 and

M0 = (σ2
bΣτ )

−1
∑

l

K−1
l CT

l (Zl − Slα)

. It is easy to see from above that b0|α, σ2
b , τ, Zl, Yl ∼ N(µ0, V0), where µ0 = K−1

0 M0

and V0 = K−1
0 . We can further integrate b0 out since the first two factors form a

normal density kernel. After integrating out b0, we can expand the term MT
0 K−1

0 M0,

combine terms of α and factor out a normal kernel for α, from where we obtain that

α|σ2
b , τ, Zl, Yl,∀l ∼ N(µα, Vα), where µα = K̃−1M̃ , Vα = K̃−1,

K̃ =
∑

l

ST
l Sl + (σ2

1I)−1 −
∑

l

ST
l ClK

−1
l CT

l Sl

− (
∑

l

K−1
l CT

l Sl)
T (σ2

bΣτ )
−1K−1

0 (σ2
bΣτ )

−1(
∑

l

K−1
l CT

l Sl),



158

and

M̃ =
∑

l

ST
l Zl−

∑

l

ST
l ClK

−1
l CT

l Zl−(
∑

l

K−1
l CT

l Sl)
T (σ2

bΣτ )
−1K−1

0 (σ2
bΣτ )

−1(
∑

l

K−1
l CT

l Zl).

We finally can integrate out α to obtain the marginal conditional posterior of σ2
b and

τ , conditional on values of Zl’s and Yl’s, which gives

π(σ2
b , τ |Zl, Yl, l = 1, . . . , L)

∝ exp

{
1

2
M̃T K̃−1M̃ +

1

2
(
∑

l

K−1
l CT

l Zl)
T (σ2

bΣτ )
−1K−1

0 (σ2
bΣτ )

−1(
∑

l

K−1
l CT

l Zl)

}

· exp

{
1

2

∑

l

ZT
l ClK

−1
l CT

l Zl

}
|K̃|−1/2|K0|−1/2(

∏

l

|Kl|−1/2)|σ2
bΣτ |−L/2|σ2

0Στ |−1/2

· π(σ2
b )π(τ),

where K̃, M̃ ,K0 and Kl’s are defined in the above derivation.



Appendix B

Proof of Proposition 4.2.1

The proof of Proposition 4.2.1 uses a result stated in the following lemma.

Lemma B.0.1. Let f : R
n 7→ R be a strictly convex function with a minimizer x̃,

and let g : R
n 7→ [0,∞) be a convex function. Then f + g has a unique minimizer

x∗ in R
n. Proof: Let h(x) = f(x) + g(x). It is easy to show that h(x) is strictly

convex from the definition. We claim that the existence of a minimizer x̃ of f implies

that h is coercive, which means h(x) → ∞ as ||x|| → ∞. The coerciveness and strict

convexity of h implies the existence of a unique minimizer x∗.

To show that h is coercive, it is sufficient to show that f is coercive (since g ≥ 0).

The minimizer x̃ of f is the unique minimizer of f by strict convexity. Also, f is

convex hence is continuous on R
n (see [66],page 82). Thus ∀ r > 0,∀ x such that

||x − x̃|| > r, we claim

f(x) >
b

r
||x − x̃|| + f(x̃)
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where b = inf{f(x) : ||x− x̃|| = r}− f(x̃). Note that b exists and b > 0 by continuity

of f . To show this inequality, let x0 = r(x − x̃)/(||x − x̃||) + x̃, so that x0 lies on

the line formed by x and x̃, with ||x0 − x̃|| = r and ||x − x0|| = ||x − x̃|| − r. Thus

f(x0) − f(x̃) ≥ b by the definition of b. Now let α = r/||x − x̃||. We see that

x0 = αx + (1 − α)x̃. By strict convexity of f ,

f(x0) < αf(x) + (1 − α)f(x̃)

Thus

b

r
||x − x̃|| + f(x̃) ≤ (f(x0) − f(x̃))

||x − x̃||
r

+ f(x̃)

< (αf(x) + (1 − α)f(x̃) − f(x̃))
||x − x̃||

r
+ f(x̃)

= f(x)

Since ||x−x̃|| ≥ ||x||−||x̃||, ||x|| → ∞ implies ||x−x̃|| → ∞, which implies f(x) → ∞

by the above inequality and the facts that b > 0, r > 0, f(x̃) finite. Therefore, f is

coercive, and so is h.

Since h is coercive, we have h(x) → ∞ as ||x|| → ∞. Therefore, if we pick an

arbitrary point x1 ∈ R
n, there exists a constant δ > 0 such that h(x) > h(x1) for all

||x− x1|| > δ. Since the domain ||x− x1|| ≤ δ is compact and h(x) is strictly convex

on it, h(x) has a unique minimizer in ||x−x1|| ≤ δ, which we denote as x∗. (A strictly

convex real valued function defined on a compact domain has a unique minimum on

its domain.) This x∗ is also the global minimizer since h(x) > h(x1) ≥ h(x∗) on

||x − x1|| > δ.
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Proof of Proposition 4.2.1: Based on results in Lemma B.0.1, we let f to be −l(θ)

and g to be λ
∑J

j=1 s(δj)||bj||2 , therefore our objective function in (4.9) is the sum of

f and g, where θ = {α0, α, bj, j = 1, . . . , J}, and l(θ) =
∑n

i=1 yiηi − log(1 + exp(ηi))

with ηi = α0 + zT
i α +

∑J
j=1

∑δj

k=1 cijkbjk.

Firstly, we show that −l(θ) is strictly convex. It is sufficient to show that its

Hessian is positive definite. Since the Hessian takes the form

▽2
θ(−l(θ)) = XT DX

where D = diag{exp(ηi)/(1 + exp(ηi))
2, i = 1, . . . , n}. It is positive definite since X

is of rank m (full rank). Secondly, since the maximum likelihood estimator exists,

−l(θ) has an unique minimizer. The existence of maximum likelihood estimator for

logistic regression requires some conditions for the design matrix X. Basically, the n

rows of X can not be completely separated or quasi-completely separated in R
m. See

[1] for details. In practice, as long as we can find a numerical solution for the MLE

at λ = 0, we would believe that the maximum likelihood estimator exists. Finally, let

g(b) = λ
∑J

j=1 s(δj)||bj||2, bT = (bT
1 , . . . , bT

J ). It is easy to see that g(b) is convex by

the triangle inequality. Therefore by Lemma B.0.1, Qλ(θ) has a unique minimizer θ∗.



Appendix C

Verification for Convergence of the

MCMC Algorithm 1 in Chapter 5.

C.1 The Verification of Algorithm 1

Based Equation (5.8),(5.10) and (5.11) in Section 5.2, Algorithm 1 can be simplified

as follows:

Step 0. Set initial values for bl’s, α, τ and σ2
b .

Step 1. Zl|α, bl, Yl ∼ TN ,l = 1, . . . , L.

Step 2. σ2
b |τ, Zl, Yl, l = 1, . . . , L.

Step 3. τ |σ2
b , Zl, Yl, l = 1, . . . , L.

Step 4. α|σ2
b , τ, Zl ∼ N(µα, Vα).
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Step 5. b0|α, σ2
b , τ, Zl ∼ N(µ0, V0).

Step 6. bl|b0, α, σ2
b , τ, Zl ∼ N(µl, Vl).

Note that Step 2 and 3 are two Metropolis-Hastings steps within the larger Gibbs

steps. Step 4-6 are simple Gibbs steps. Let Z = (Z1, . . . , ZL), Y = (Y1, . . . , YL)

and b = (b1, . . . , bL). We firstly combine step 2 and 3 by letting E = (σ2
b , τ). We can

represent the transition kernel from Step 2−3 as P (E,A) with (conditional) transition

density f(Ẽ|E,Z, Y ) = p2(τ̃ |τ, σ̃2
b , Z, Y )p1(σ̃

2
b |σ2

b , τ, Z, Y ). Therefore, f(Ẽ|Z, Y ) =

´

f(Ẽ|E,Z, Y )f(E|Z, Y )dE in the bigger Gibbs steps in (C.1). Later on we will

verify that P (E,A) is invariant with respect to the conditional measure f(E|Z, Y ).

First of all, we need to check that the transition kernel formed by the whole

MCMC steps is invariant. Here we denote the domain of parameter x as D(x). Then
ˆ

D(b)

ˆ

D(b0)

ˆ

D(α)

ˆ

D(E)

ˆ

D(Z)

f(b̃|b̃0, α̃, Ẽ, Z̃, Y )f(b̃0|α̃, Ẽ, Z̃, Y )f(α̃|Ẽ, Z̃, Y )f(Ẽ|Z̃, Y )

· f(Z̃|b, b0, α,W, Y )f(b, b0, α,W,Z|Y ) dZ dW dα db0 db

(C.1)

=

ˆ

D(b)

ˆ

D(b0)

ˆ

D(α)

ˆ

D(E)

f(b̃|b̃0, α̃, Ẽ, Z̃, Y )f(b̃0|α̃, Ẽ, Z̃, Y )f(α̃|Ẽ, Z̃, Y )f(Ẽ|Z̃, Y )

· f(Z̃|b, b0, α,W, Y )f(b, b0, α,W |Y ) dW dα db0 db

(Since

ˆ

D(Z)

f(b, b0, α, W, Z|Y ) dZ = f(b, b0, α, W |Y ).)

=

ˆ

D(b)

ˆ

D(b0)

ˆ

D(α)

ˆ

D(E)

f(b̃|b̃0, α̃, Ẽ, Z̃, Y )f(b̃0|α̃, Ẽ, Z̃, Y )f(α̃|Ẽ, Z̃, Y )f(Ẽ|Z̃, Y )

· f(Z̃, b, b0, α,W |Y ) dW dα db0 db
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=

ˆ

D(b)

ˆ

D(b0)

ˆ

D(α)

f(b̃|b̃0, α̃, Ẽ, Z̃, Y )f(b̃0|α̃, Ẽ, Z̃, Y )f(α̃|Ẽ, Z̃, Y )f(Ẽ|Z̃, Y )

· f(Z̃, b, b0, α|Y ) dα db0 db

(Since

ˆ

D(E)

f(Z̃, b, b0, α, W |Y ) dW = f(Z̃, b, b0, α|Y ).)

=f(b̃|b̃0, α̃, Ẽ, Z̃, Y )f(b̃0|α̃, Ẽ, Z̃, Y )f(α̃|Ẽ, Z̃, Y )f(Ẽ|Z̃, Y )

·
ˆ

D(b)

ˆ

D(b0)

ˆ

D(α)

f(Z̃, b, b0, α|Y ) dα db0 db

=f(b̃|b̃0, α̃, Ẽ, Z̃, Y )f(b̃0|α̃, Ẽ, Z̃, Y )f(α̃|Ẽ, Z̃, Y )f(Ẽ|Z̃, Y )f(Z̃|Y )

=f(b̃, b̃0, α̃, Ẽ, Z̃|Y )

This shows that the transition distribution formed by the larger Gibbs steps from

step 1-6 is invariant.

Secondly, we look at step 2 and 3 in detail. we need to show that the transition

density f(Ẽ|E,Z, Y ) = p2(τ̃ |τ, σ̃2
b , Z, Y )p1(σ̃

2
b |σ2

b , τ, Z, Y ) is invariant with respect to

the conditional distribution f(E|Z, Y ). For simplicity, we remove the Z, Y from the

transitional densities since all of them(within steps 2 − 3) are conditional on Z, Y .

Let q1(σ̃
2
b |σ2

b ) be the proposal density for step 2, with the corresponding acceptance

rate

α1(σ̃
2
b |σ2

b , τ) = min{π(σ̃2
b |τ)q1(σ

2
b |σ̃2

b )

π(σ2
b |τ)q1(σ̃2

b |σ2
b )

, 1}.

Therefore the transition density for step 2 is

p1(σ̃
2
b |σ2

b , τ) = q1(σ̃
2
b |σ2

b )α1(σ̃
2
b |σ2

b , τ)1{σ̃2
b
6=σ2

b
}.



165

Then the Metropolis-Hastings routine gives us the following so called reversibility

condition:

π(σ2
b |τ)p1(σ̃

2
b |σ2

b , τ) = π(σ̃b
2|τ)p1(σ

2
b |σ̃2

b , τ). (C.2)

Similarly, we let the proposal density for step 3 to be q2(τ̃ |τ). The associated accep-

tance rate is

α2(τ̃ |τ, σ̃2
b ) = min{π(τ̃ |σ̃2

b )q2(τ |τ̃)

π(τ |σ̃2
b )q2(τ̃ |τ)

, 1}. (C.3)

Hence the transition density for step 3 is

p2(τ̃ |τ, σ̃2
b ) = q2(τ̃ |τ)α2(τ̃ |τ, σ̃2

b )1{τ̃ 6=τ}.

Again, Metropolis-Hastings routine gives us the following reversibility condition:

π(τ |σ̃2
b )p2(τ̃ |τ, σ̃2

b ) = π(τ̃ |σ̃2
b )p2(τ |τ̃ , σ̃2

b ). (C.4)

The proofs of Equation (C.2) and (C.4) are general for Metropolis-Hastings and can

be done by following the theorem in the Section C.2.
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Based on the above setup, the invariant transition distribution for step 2 and 3

can thus been shown as follows:

ˆ

D(E)

f(Ẽ|E)π(E) dE

=

ˆ

D(τ)

ˆ

D(σ2
b
)

p2(τ̃ |τ, σ̃2
b )p1(σ̃

2
b |σ2

b , τ)π(σ2
b |τ)π(τ) dσ2

b dτ

=

ˆ

D(τ)

π(τ)p2(τ̃ |τ, σ̃2
b )



ˆ

D(σ2
b
)

π(σ2
b |τ)p1(σ̃

2
b |σ2

b , τ) dσ2
b


 dτ

=

ˆ

D(τ)

π(τ)p2(τ̃ |τ, σ̃2
b )



ˆ

D(σ2
b
)

π(σ̃2
b |τ)p1(σ

2
b |σ̃2

b , τ) dσ2
b


 dτ (by Equation (C.2))

=

ˆ

D(τ)

π(τ)p2(τ̃ |τ, σ̃2
b )π(σ̃2

b |τ)dτ

=

ˆ

D(τ)

π(σ̃2
b )p2(τ̃ |τ, σ̃2

b )π(τ |σ̃2
b )dτ

=

ˆ

D(τ)

π(σ̃2
b )p2(τ |τ̃ , σ̃2

b )π(τ̃ |σ̃2
b )dτ (by Equation (C.4))

= π(σ̃2
b )π(τ̃ |σ̃2

b )

= π(σ̃2
b , τ̃)

= π(Ẽ)

This proved that the Metropolis-Hastings Step in Step 2−3 has the right invariant

density.

In addition to check invariance, we also need to check irreducibility and aperiodic-

ity.(Note that irreducibility and existence of invariant distribution implies recurrency,
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and thus implies positive recurrency when π has finite total mass([73],page 1712).)

Since the algorithm has component-wise transition, it suffices to check that each

transition kernel (in each step) is irreducible and aperiodic. The irreducibility for

transitions of Z, σ2
b , α, b0 and b is straight-forward since the transitions are fully sup-

ported on their convex domains. For τ , it lies in a domain of finite number of points,

for each pair of τ and τ ′, there is a n such that P n(τ ′|τ) > 0. A simple strategy is let

τ firstly reduce to a vector of all 0’s in τT τ steps, and let it increase to τ ′ in (τ ′)T τ

steps, then n = τT τ + (τ ′)T τ , and the transition probability is positive. Aperiodicity

is trivial to check. Since we can not find a d-cycle for the transition kernel hence it

is aperiodic.

To sum up, we have shown that the transition kernel formed by algorithm 1 has

invariant distribution π(·) and is irreducible and aperiodic, hence by Theorem 1 of

Tierney([73]), it converges (in total variation) to a unique distribution π(·), which is

our posterior density.

C.2 Reversible Condition of Metropolis-Hastings

Assume that π has a density with respect to µ and let Q be a transition kernel of the

form

Q(x, dy) = q(x, y)µ(dy).

Let E+ = {x : π(x) > 0} and assume that Q(x,E+) = 1 for x 6∈ E+. Also assume

that π is not concentrated on a single point. For a given Xn = x, we propose a
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candidate value Y = y for the next point Xn+1 from the distribution Q(x, ·), and

accept it with probability

α(x, y) = min{π(y)q(y, x)

π(x)q(x, y)
, 1}.

Otherwise, the candidate is rejected and the chain remains at Xn+1 = x.

If we define the off-diagonal density of a Metropolis kernel as

p(x, y) = q(x, y)α(x, y)1{x 6=y},

and set r(x) = 1 −
´

p(x, y)dy, then the Metropolis kernel P can be written as

P (x, dy) = p(x, y)µ(dy) + r(x)δx(dy), (C.5)

where δx denote point mass at x. The value r(x) is the probability that the algorithm

remains at x.

Proposition For the Metropolis kernel defined above, we have

π(x)p(x, y) = π(y)p(y, x), (C.6)

which is called reversibility condition.

proof. If x = y, then p(x, y) = 0, both sides equal 0. If x 6= y and π(y)q(y, x) ≥

π(x)q(x, y), we have α(x, y) = 1. Therefore the left hand side(LHS) of Equation C.6

is

LHS = π(x)p(x, y) = π(x)q(x, y)α(x, y) = π(x)q(x, y).

The right hand side(RHS) of Equation C.6 is

RHS = π(y)p(y, x) = π(y)q(y, x)α(y, x) = π(y)q(y, x)
π(x)q(x, y)

π(y)q(y, x)
= π(x)q(x, y).
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Therefore LHS=RHS, the equality holds. For the case of π(y)q(y, x) < π(x)q(x, y),

we can similarly show that the equality holds.



Appendix D

Some Details on EMC Algorithms

Here we give a more detailed introduction of EMC algorithm based on the work of

Liang and Wong [39], Liu [40] and Goswami and Liu [24]. The basic goal of EMC

algorithm is to generate Markov Chain samples from a target distribution π(x), which

can be a posterior distribution, or a conditional posterior distribution. In Liang and

Wong [39], Liu [40] and Goswami and Liu [24], they focus on sampling from a target

distribution with density function

f(x) ∝ exp{−H(x)/t}, (D.1)

where H(x) is called an energy function , which is equivalent to − log π(x) in our

Bayesian setup. The target function (D.1) is then a transformed version of π(x) since

exp{H(x)/t} = exp{−(− log π(x))/t} = π(x)1/t.

The t is called a temperature, which has the effect of making the target density more

flat or more spiky, as shown in Figure D.1. Liang and Wong [39] assume that there
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Figure D.1: The plot of π(x)1/t for a two-mode mixture normal distribution. The
density π(x) = 1/2φ(x; 0, 1.52) + 1/2φ(x; 10, 0.52), where φ(x; µ, σ2) is the normal
density with mean µ and variance σ2.

are multiple t’s, denoted as ti, i = 1, . . . , N , and ti’s are ordered from high to low.

The set {t1, . . . , tN} is called a temperature ladder. Assume that x ∈ R
d and here

we assume each component of x is either 1 or 0. EMC algorithm first expands the

sample space from R
d to R

Nd by defining a new target density

π(x) ∝
N∏

i=1

π(xi)
1/ti ,

where x = (x1, . . . , xN) is called a population of samples. The Markov Chain samples

is obtained based on π(x) with 3 types of operation: mutation, crossover and ex-

change. We summarize the details of the EMC algorithm stated in Liang and Wong

[39] and Liu [40].

An EMC algorithm

Step 0. Set the temperature ladder {t1, . . . , tN}, the initial values x = (x1, . . . , xN)
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and the mutation rate qm.

Step 1. With probability qm, run mutation and with probability 1−qm, run cross over.

(a) Mutation. Randomly select xk from (x1, . . . , xk, . . . , xN). Propose x′
k by

reversing some randomly selected bits of xk(Note: it is called 1-point/2-

points mutation based on the number of bits selected for switch). Denote

x′ = (x1, . . . , x
′
k, . . . , xN), the new x′ is accepted with min(1, rm), with

log rm = log

{
π(x′)T (x|x′)

π(x)T (x′|x)

}
=

[log π(x′
k) − log π(xk)]

tk

T (x|x′)

T (x′|x)
.

Here T (x|x′) denotes the transition probability of the proposal. Note that

using 1-point or 2-point mutation will both result in symmetric transition

probability ([39],Page 322).

(b) Crossover. First, randomly select a pair (xi, xj), according to probabil-

ity

p((xi, xj)|x) =
π(xi)

1/t + π(xj)
1/t

∑N
j=1 π(xj)1/t

, xi 6= xj.

This can be done by firstly selecting xi with probability

p(xi|x) = π(xi)
1/t/

∑

j

π(xj)
1/t,

then choosing xj independent of xi, but with the same sampling proba-

bility. If xi = xj, we discard them and repeat sampling until we obtain

a distinct pair. ([40], Page 231). Here t is fixed (may not be the same

with items in the temperature ladder). This selecting procedure is called
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“roulette wheel” selection ([39], Page 319). After the pair (xi, xj) is cho-

sen, randomly select a location k as a crossover point, and swap xi with xj

starting to the right of the crossover point([39],Page 320). For example,

if we denote xi = (a1, . . . , ak, . . . ad), and denote xj = (b1, . . . , bk, . . . , bd).

Then after crossover at location k, we get

x′
i = (a1, . . . , ak, bk+1, . . . bd),

x′
j = (b1, . . . , bk, ak+1, . . . , ad).

Denote the population of sample after crossover to be

x′ = (x1, . . . , x
′
i, . . . , x

′
j, . . . , xN),

the Metropolis ratio can be computed by

log rc = log
π(x′)T (x|x′)

π(x)T (x′|x)

=
log π(x′

i) − log π(xi)

ti
+

log π(x′
j) − log π(xj)

tj
+ log

T (x|x′)

T (x′|x)

where T (x′|x) = P{(xi, xj)|x}P{(x′
i, x

′
j)|(xi, xj)}. Note that according

to the selection rule, we have P{(x′
i, x

′
j)|(xi, xj)} = P{(xi, xj)|(x′

i, x
′
j)},

therefore the ratio of transition probabilities is reduced to the ratio of

selection probabilities, i.e.,

T (x|x′)

T (x′|x)
=

P{(x′
i, x

′
j)|x′}

P{(xi, xj)|x}

=
π(x′

i)
1/t + π(x′

j)
1/t

π(x′
i)

1/t + π(x′
j)

1/t +
∑

k 6=i,j π(xk)1/t
·
∑N

k=1 π(xk)
1/t

π(xi)1/t + π(xj)1/t
.

The new x′ is accepted with probability min(1, rc).



174

Step 2. Selecting a pair (xi, xj) from the neighboring chains, i.e., |i − j| = 1. Let

x′
i = xj and x′

j = xi, and compute the Metropolis ratio

log re = log
π(x′)T (x|x′)

π(x)T (x′|x)
= [log π(xj) − log π(xi)](

1

ti
− 1

tj
) + log

T (x|x′)

T (x′|x)
.

Note that the transition probability here is symmetric, since if we let p(xi) be

the probability of selecting xi, and let w(xj|xi) be the probability that xj is

chosen to be exchanged with xi, then

T (x′|x) = p(xi)w(xj|xi) + p(xj)w(xi|xj).

Therefore T (x′|x) = T (x|x′).

Note that in the EMC algorithm, each step can be run multiple times. For exam-

ple, in the mutation step, Liang and Wong’s algorithm ([39], Page 324) let each xk to

be updated independently using the mutation operation, and let the crossover opera-

tion repeat for [N/5] (the integer part of N/5) times, and let the exchange operation

repeat N times. Goswami and Liu’s algorithm ([24], Page 25), however, performs

mutation updates M times for each xk, and performs crossover updates [N/2] times,

and exchange updates N times.
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