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Abstract

Functional Data Classification and Covariance

Estimation

by

Hongxiao Zhu

Focusing on the analysis of functional data, the first part of this dissertation
proposes three statistical models for functional data classification and applies them
to a real problem of cervical pre-cancer diagnosis; the second part of the dissertation
discusses covariance estimation of functional data.

The functional data classification problem is motivated by the analysis of fluores-
cence spectroscopy, a type of clinical data used to quantitatively detect early-stage
cervical cancer. Three statistical models are proposed for different purposes of the
data analysis. The first one is a Bayesian probit model with variable selection, which
extracts features from the fluorescence spectroscopy and selects a subset from these
features for more accurate classification. The second model, designed for the prac-
tical purpose of building a more cost-effective device, is a functional generalized lin-

ear model with selection of functional predictors. This model selects a subset from



iii
the multiple functional predictors through a logistic regression with a grouped Lasso
penalty. The first two models are appropriate for functional data that are not contam-
inated by random effects. However, in our real data, random effects caused by devices
artifacts are too significant to be ignored. We therefore introduce the third model,
the Bayesian hierarchical model with functional predictor selection, which extends the
first two models for this more complex data. Besides retaining high classification ac-
curacy, this model is able to select effective functional predictors while adjusting for
the random effects.

The second problem focused on by this dissertation is the covariance estimation of
functional data. We discuss the properties of the covariance operator associated with
Gaussian measure defined on a separable Hilbert Space and propose a suitable prior
for Bayesian estimation. The limit of Inverse Wishart distribution as the dimension
approaches infinity is also discussed. This research provides a new perspective for

covariance estimation in functional data analysis.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Statistical theories generally fall into two categories: univariate and multivariate,
according to the dimensionality of the underlying random variables. For univariate
theory, the object of interest is a one-dimensional random variable (denoted by X)

which maps the sample space () to the real line R, i.e.,
X :(,B(Q) — (R,B(R)).

Here, for a given set A, B(A) represents the o-field generated by subsets of A. The
pair (A, B(A)) is a measurable space, and the map X is measurable by the definition
of random variable. If the random element of interest is more than one dimensional,

1



we use a random vector (denoted by X ) instead and the measurable map becomes
X (2,B(2)) — R™, BR™)),

where R™ is a m-dimensional Euclidean space. Statistical analysis for finite dimen-
sional random vectors (or random matrices) is called multivariate data analysis (see,
for example, Muirhead [50]). When m approaches infinity, the random vector becomes
a random sequence. A more general extension is to treat m as an index variable tak-
ing values from some index sets 7' (which can be uncountable). Then the measurable
map can be treated as a random function with argument in 7. Under this setting, we
call the observed data, usually in forms of curves and images, “functional data”. The
statistical methods for analyzing functional data are named “functional data analy-
sis” (FDA), coined by Ramsay and Dalzell [59]. In many cases, the index set 7" is a
dense set such as a temporal or spatial domain, therefore ideally functional data can
have as high resolution as possible. In this dissertation, we let X (¢) be the random
function indexed by ¢,¢ € T and x(t) be its data realization. Alternatively, Ferraty

and Vieu [19] call X (¢) a functional variable, defined as follows:

Definition 1.1.1. A random variable is called functional variable if it takes values in
an infinite dimensional space (or functional space). An observation of the functional
variable is called a functional data.(Ferraty and Vieu [19])

Many real data, such as most images and signals, can be treated as functional
data. Figure 1.1 shows an example of multivariate data and functional data. Another

practical example in medical research is shown in Section 1.2.
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Figure 1.1:  The left panel is the data plot for the sepal length and width (in
centimeters) for 150 iris flowers, which is an example of multivariate data. There are
two measurements,length and width. The right panel is the plot of 39 boys’ heights
measured through age 1 to 18, which is is an example of functional data.

The research in FDA started in the 1980s. As time goes on, FDA becomes one of
the most important new statistical methodologies with diverse applications in many
areas. As a relatively new field, FDA borrows many ideas from non-parametric
statistics and multivariate data analysis, and adopts techniques from signal /image
processing, longitudinal data analysis and data mining. Generally speaking, we can

categorize current statistical methods in FDA literature as follows:

1. Smoothing and Registration. As preprocessing steps, smoothing and reg-
istration techniques help filter out noise (or observation errors) of the original
data and align them appropriately on their domain. Nonparametric regression
methods, such as smoothing spline and penalized methods, are usually used

for smoothing functional data. Registration is usually done by setting up a



registration criterion, or using landmarks or warping functions.

2. Functional Principal Component Analysis (FPCA). As an important
dimension reduction technique in multivariate analysis, Principal Component
Analysis (PCA) finds the dominate modes of variation in the data. By changing
summations to integrations, this technique can also be extended to the func-

tional case.

3. Regression. Many works concerning regression problems in functional data
have been done, from both frequentist and Bayesian perspectives. It turns out
that most classical regression models in multivariate analysis, such as multi-
variate ANOVA, mixture effects model, generalized linear regression, have their

analogous version in FDA.

4. Hypothesis Testing. The topic of hypothesis testing in functional data is
not as well developed as other FDA methods. The main difficulty lies in the
assumption of infinite-dimensionality of the functional space. Recently, some
new methods are proposed on testing whether one group of functional data has

zero mean, or whether two groups have the same mean function.

1.2 A Functional Data Example.

The work in this dissertation is motivated by a series of fluorescence spectroscopy

data in cancer research. As a special type of functional data, spectroscopy data
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Figure 1.2: Using fluorescence spectroscopy to detect cervical pre-cancer in wvivo.
This picture is obtained from http://www.eng.ucy.ac.cy/biaolab/Education/tutorials
[65].

contain the spectra of particular lights emitted (or absorbed) by a given material.
This section gives a brief introduction to the fluorescence spectroscopy data used in
cervical pre-cancer diagnosis.

Cervical cancer is known to be one of the leading causes of cancer deaths in
women. Early-stage diagnosis using automatic, low cost screening devices plays an
important role in the prevention of cervical cancer. Among the existing diagnosis
tools, fluorescence spectroscopy is a promising technology to quantitatively detect
cervical pre-cancer in a non-invasive way [57]. Figure 1.2 illustrates the mechanism of
measuring fluorescence spectroscopy in vivo. This technology works as follows: First,
an excitation light at a fixed wavelength illuminates the cervical tissue. During illu-
mination, the endogenous fluorescent molecules in tissue absorb the excitation light

and emit fluorescent light. The emitted light is then captured by an optical detector
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Figure 1.3: Left panel: spectral curves at 8 different excitation wavelengths ranging

from 330nm to 400nm. Right panel: heat plot of an excitation-emission matrix
(EEM).

which produces the corresponding spectrum as a smooth curve. By adjusting the
wavelength of the excitation light, the detector records multiple spectral curves. In
each measurement, the excitation light is varied at 16 different excitation wavelengths,
ranging from 330 nm to 480 nm with increments of 10 nm. This produces 16 spectral
curves for each measurement. In each curve, the fluorescence intensities are recorded
at emission wavelengths ranging between 385 nm and 700 nm. Through data prepro-
cessing, the curves are truncated so that some intensity points at the smallest and
largest emission wavelengths are removed.

Figure 1.3 illustrates one observation. The left panel shows the first 8 of the
total 16 spectral curves in this observation. The right panel shows a heat plot of
the spectral intensities, by stacking up all the 16 spectral curves in the order of their

excitation wavelength. We call such a set of fluorescence spectroscopy curves an



Disease Level | Discription Diagnosis
Cancer Evidence of cancer

CIS Carcinoma in situ

CIN III Severe cervical intraepithelia neoplasia Diseased
CIN II Moderate cervical intraepithelia neoplasia

CIN I Mild cervical intraepithelia neoplasia

HPV HPYV associatied changes Normal
Atpia Atpia

Normal No evidence of disease

Table 1.1: The diagnosis levels and the discription

excitation-emission matrix (EEM).

The data considered in this dissertation contain 2414 measurements taken from
1006 patients. Each patient has 1 or more (up to 6) sites measured and there exists
repeated measurements (although not for every patient). All measurements come
from two devices (called Fast EEM2 and Fast EEM3), four probes and three clinics
(MDACC, LBJ and BCCA). The colposcopic tissue type of the measurements can
be either squamous or columnar. The menopausal status of the patients can be pre-
peri- and post-menopausal. After pre-processing such as background correction and
smoothing, the data were carefully split into training set and test set by balancing
various factors. The proportion of diseased cases in the training and test sets are 10%
and 9%, respectively.

The goal of our study is to discriminate normal from diseased measurements based
on the EEM. Table 1.1 lists the detailed disease categories provided by pathologists
in a progressive order. In our study, we consider all cases from CIN II or worse as

diseased, and cases from CIN I or better as normal.
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Figure 1.4: The heat plots for the median values of all normal-case EEMs versus the
median values of all disease-case EEMs.

Figure 1.4 shows the heat plots of the median values of all normal-case EEMs
versus those of all disease-case EEMs. Differences between the two plots are hard to
be detected by naked eyes, although the normal-case EEM seems to have higher peak

than the diseased-case EEM.

1.3 Literature Review

Much attention has been given to FDA since the 1980s. Early works include Ramsay
[58], Ramsay and Dalzell [59] and Rice and Silverman [64]. More recently, Ramsay and
Silverman ([62],[60]) did a systematic survey and addressed some applications issues
[61]. As summarized in Section 1.1, there are mainly four areas of FDA that have
received considerable attentions. Since this dissertation focuses on classification and

covariance estimation, we will only review the literature related to such topics, which



include functional principal component analysis, regression and covariance estimation.
Other topics, like smoothing and registration of functional data, are well presented
in Chapter 3 — 5 and Chapter 7 of Ramsay and Silverman [62]; and one can find a

detailed review of hypothesis testing of FDA in Chapter 4 of Lee [36].

1.3.1 Functional Principal Component Analysis

As one of the basic and widely used techniques proposed for FDA, Functional principal
component analysis (FPCA) is a direct extension of multivariate principal component
analysis(PCA). FPCA was first introduced by Ramsay ([58], [59]), Rice and Silverman
[64], and was studied in detail by Ramsay and Silverman ([62],[60]). We briefly
summarize these works in this section. Later chapters will use compatible notations.

In multivariate data analysis, principal components are computed by eigenvalue
decomposition of the covariance matrix. Let X be a multivariate data matrix of size
n X p, its sample covariance V' can be computed by V = %X TX. The first eigenvector

of X (denote ¢;) can be obtained by

¢) = argmax ¢" V¢,
[lp[l=1

which is equivalent to solving for the largest eigenvalue A\ and the corresponding

eigenvector ¢ from

Vo= A\o. (1.1)
The first principal component scores can thus be obtained by X7 ¢;. Solving Equa-

tion (1.1) subject to the condition ¢l ¢; = 0 gives the second eigenvector. Similarly,
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one can find out all eigenvectors.

In the functional data case, one can define the covariance operator V' by

Vo(s) = / o(s, (1),

where v(s,t) = 1/n ), z;(s)x;(t) is the sample covariance function and ¢(-) is the
eigenfunction. The largest eigenvalue p and the corresponding eigenfunction ¢(-) can

be solved from

Vo =pg, (1.2)

which is of the same form as Equation (1.1) except that V' and ¢ are defined differently.
The first principal component score for x;(t) can be computed from (z;(t), p1()).
Similar to the multivariate case, the second and later eigenfunctions can be obtained
by adding the orthogonal constraint to Equation (1.2). To solve Equation (1.2), one
can either discretize the x;(¢)’s on a finite grid, or expand them on another set of
orthonormal basis.

In order to obtain eigenfunctions with sufficient smoothness, Rice and Silverman
introduces a smoothed PCA method by adding a roughness penalty [64]. In their

paper, the first eigenfunction is obtained by

b1 = aﬂ%ﬁrﬁ?xwa (V = AD)o),

where D is a roughening operator taking form of F'7 F, where F is a second-order dif-

ferencing operator. The subsequent eigenfunctions are obtained by adding additional



11

orthogonal conditions. The estimation of smoothed eigenfunctions is obtained by
finding the eigenfunctions of V' — AD, where \ is chosen by cross-validation. Later on,

this method was improved in Silverman [68], where the first eigenfunction is solved

by

(¢, Vo)
19117 + Alg, ¢’

¢1 = argmax

and [¢, ¢ = [(¢"(1))?dt.

Following Silverman’s smoothed FPCA, more theoretical results of FPCA have
been investigated. Ocana, Aguilera and Valderrama [54] assume Hilbert valued ran-
dom variables and established equivalences between FPCA with a proposed inner
product in the data space and certain FPCA with a given well-suited inner product.
They also extended Silverman’s method to a more general framework based on Hilbert
valued random variables. Cardot [12] proposed a non-parametric conditional FPCA
method and provided some consistency properties. Hall and Vial [29] studied the
extrema of empirical principal component functions and compared them with those
of the true principal component functions. They found that the empirical principal
component functions can hardly distinguish a “shoulder” in a curve from a small
bump. So they suggest a bootstrap method to assess the strength of the extrema.
More properties of FPCA were discussed by Hall and Hosseini-Nasab [27], where they
studied properties of FPCA through stochastic expansions. Their work demonstrated
the fact that the properties of eigenfunction estimations are affected by the spacing

among eigenvalues. They also propose bootstrap methods to construct simultaneous
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confidence regions for eigenvalues and eigenvectors.

The sparsity of functional data has also caught much attention. James, Hastie
and Sugar[33] introduce a reduced rank mixed effect model to estimate the principal
component functions when data are irregular and sparse. Hall, Miiller and Wang
28] focus on the effect of the sampling plan to the estimation of principal compo-
nent functions. They indicate that the sparsity of the functional data can affect the
convergence rates for the estimated eigenfunctions, but not for the estimated eigen-
values. Yao and Lee [80] propose penalized spline models for sparse functional data or
longitudinal data. They developed an iterative procedure to reduce the dependence
between the measurements within each subject (the dependence between the discrete
points measured on the same curve).

Besides these theoretical works, many others aim at applying FPCA to solve a
broad range of functional data problems, such as Grambsch et al. [25], James [32],

Chiou, Miiller and Wang [15], Park [55].

1.3.2 Functional Data Regression

To extend multivariate regression to the functional case, the most straightforward way
is by using the point-wise models, which is similar to the varying coefficient model
or the contemporary model (see Hastie and Tibshirani [31] and Staniswalis and Lee

[70]). Let Y;(t) be the functional responses and z;(t) be the covariates, i = 1,...,n.
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Suppose that the point-wise model takes form

yi(t) = at) + z;i () B(t) + €(t).

Cardot, Ferraty and Sarda [13], James [32] and Malfait et al. [41] considered the case
where the the response values at time ¢ are explained by the predictor curves x;(s)
through:

yi(t) = alt) + /T z;i(8)P(s,t)ds + €(t),
where T; = [0,¢] or [t — 6, 1].

In many cases, regression with functional predictors and scalar responses is of
particular interest. James [32] extended the generalized linear model (GLM) using
spline basis to include functional predictors. Miiller and Stadtmiiller [51] proposed
a similar method based on truncated Karhunen-Loéve expansion and proved some
asymptotic properties of the estimation. To summarize the basic structure, let us

assume that the functional generalized linear model takes form

Y =gla+ /ﬁ(t)X(t)dt) +e,

where Y is a univariate response variable, X (¢) is the functional predictor, and g(+)
is an appropriately defined link function. Cardot and Sarda [14] analyzed the link
between a scalar response and a functional predictor in a regression setting by means
of a functional GLM. Besse et al.[6] also discussed several estimation methods under
functional GLM setting. Li and Hsing [38] investigated the convergence rate of the

estimation of the regression weight function in a functional linear regression model.
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Another interesting model is the functional analysis of variance (FANOVA), in
which functional responses are assumed. The predictors are usually real or dummy

variables. The FANOVA model can be written as

Yi(t) = p(t) + au(t) + eu(t),

where Y}; is the ith observation in group [, u(t) is the grand mean and () is the
effect of group [ such that ), «(t) = 0 for all £. This model can be written in a more

general form as
y(t) = ZB(t) + (1),

where Z is a design matrix and B(¢) is a vector of regression functions. Here both
y(t) and €(t) can be vector of functions. Detailed fitting procedures can be found
in Ramsay and Silverman [60]. Cardot[11] proposed a nonparametric estimator of
regression function when the predictor is real but the response is functional.

From Bayesian perspectives, Morris et al. applied discrete wavelet transform
(DWT) to the modeling of hierarchical functional data [49]. Morris and Carroll [48]

extended linear mixed model to functional mixed model, which is given by

Y(t)=XB(t)+ ZU(t) + E(t),

where Y () is a vector of N functional responses and B(t) is a p—vector of fixed
effect functions associated with the N x p design matrix X. U (t) is a m—vector of
random-effect functions associated with the N x m design matrix Z. E(t) is a vector

of error process. The above model is transformed to wavelet domain through DW'T,
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where Bayesian methods are used to estimate the regression parameters. A similar
model was applied to the accelerometer data in Morris et al. [46], [47]. McKeague
[42] used Bayesian nonparametric regression and time warping to solve the signature
verification problem. Behseta et al. [5] discussed some methods to account for esti-
mation variation using Bayesian hierarchical models. More recent works on Bayesian

functional data regression can be found in [10], [71], etc.

1.3.3 Functional Data Covariance Estimation

The most popular way of estimating the covariance of functional data is through
orthogonal expansions, that is, write the covariance function as a weighted linear

combination of eigenvalues and eigenfunctions:

7(8’ t) = Z /\k¢k(5)¢k‘(t)’

and the estimation methods are the same as in FPCA in Section 1.3.1. Smoothing
steps are usually introduced when estimating the eigenfunctions, such as the penalized
method in Rice and Silverman [64] and the scatter-plot smoothing in Yao et al. [79].
Alternatively, Lee [37] estimated the covariance matrix through sample estimates on
a finite grid. They then smoothed the eigenvectors of the covariance matrix to obtain
the eigenfunctions. A summary of these works can be found in the dissertation of Lee
36].

Yao [78] applied kernel method in Longitudinal data analysis to estimate the

mean and covariance function of functional data, based on the Nadaraya-Waston
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estimator or local linear estimator. He also derived the asymptotic distribution of
such nonparametric estimator for functional data contaminated with measurement

eIror.

1.4 Outline of the Dissertation

We introduce some background knowledge in Chapter 2. In Chapter 3, a Bayesian
probit model with variable selection is proposed for functional data classification and
applied to the fluorescence spectroscopy data. To select a subset of the multiple
functional predictors for more cost-effective classification, we propose a functional
generalized linear model with a grouped-lasso penalty in Chapter 4, from a frequentist
point of view. Chapter 5 extends the Bayesian probit model in Chapter 3 to account
for random effects and to select functional predictors. Chapter 6 discusses covariance
estimation of functional data. Further conclusions and discussions are put in Chapter

7.



Chapter 2

Background

2.1 Convergence of Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) originated in statistical physics, marked by a
paper of Metropolis et al. [44] in 1953. Since then, MCMC has become increasingly
popular in Bayesian modeling. In this section, we review some theoretical background
of MCMC, especially on the convergence of Gibbs and Metropolis algorithms. The
review is based mainly on Tierney’s work [73], and partly on Professor Dennis D.
Cox’s class notes for Stochastic Process (taught in Spring, 2008). We only consider

Markov Chains with continuous state space.

17
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2.1.1 General Definitions and Results

Let 7 be the posterior distribution of interest. Suppose 7 is supported on £ C R* and
is absolutely continuous with respect to a o-finite measure p, i.e., 7(dz) = 7(z)p(dz).
The main purpose of MCMC algorithms is to generate dependent samples (Markov
chain) X,,,n = 1,2,... with equilibrium distribution 7. In other words, we want X,
to converge in distribution to 7 as n increases.

Assume that a time-homogeneous Markov chain with invariant distribution 7 has

transition kernel defined by
P(X,,A) = Pr{X, 1 € A|Xo,..., X,,} = Pr{X,.1 € A|X,,} = Pr{X; € A|Xo}

for all measurable sets A € &, where £ is the o-field generated by E. 7 is called
an invariant distribution with respect to P(-, A) if m(A) = [ P(x, A)w(dz). The

conditional distribution of X,, given X is written as
Pn(X(],A) = PT{Xn - A|X0},

where P" denotes the nth iterate of the kernel P. A formal definition of the transition

kernel is stated in Definition 2.1.1.

Definition 2.1.1. (Transition Kernel) Let £ be a countably generated o-algebra

on E. A (Markov) transition kernel on (E,E) is a map P : E x € — [0,1] such that:
(1) VA € &, the function P(-, A) is measurable;

(2) Yz € E, the function P(x,-) is a probability measure on (E,E).
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For a probability measure v, a transition kernel P on (E, &) and a real-valued

E-measurable function h, define vP, Ph and vh by

(vP)(A) = / P(x, Ap(dr), (Ph)(z) = / W(y)Pla,dy). vh = / h(y)v(dy),

Vx € E and A € €. In other words, P(-,+) is an operator that plays two roles. For
a probability measure v on (E, &), vP is a probability measure. vP can be thought
of as the distribution of X,,,; when X,, ~ v. For a bounded function h: £ — R, Ph
can be thought of as a conditional expectation: (Ph)(x) = E[h(X,41)|X,, = z]. A

non-negative real-valued function A is called harmonic for P if h = Ph.

Definition 2.1.2. (Irreducible) A transition kernel P on (E, &) is w-irreducible if
7(E) > 0 and for each x € E and each A € € with w(A) > 0, there exists an integer
n=n(z,A) > 1 such that P"(x,A) > 0.

A Markov chain with invariant distribution « is irreducible if, for any initial state, it

has positive probability of entering any set to which 7 assigns positive probability.

Definition 2.1.3. (Periodic) A m-irreducible transition kernel P is periodic if there
exists an integer d > 2 and a sequence {Ey, Ey, ..., E4_1} of d nonempty disjoint sets

in & such that for allt=1,...,d—1 and all x € F;,
P(x,E;) =1 for j =i+ 1(mod) d.

In this case, we call C' = Uf;ol E; a d-cycle. If P is not periodic, we call it aperiodic.
In other words, a chain is periodic if there are portions of the state space it can only

visit at certain regularly spaced times.
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Definition 2.1.4. (Recurrence) A w-irreducible chain {X,} with invariant distri-

bution m is recurrent if for each B with w(B) > 0,
P.{X, € Bi.o.} >0 for all z,

P.{X, € Bi.o.} =1 for m-almost all x.

The chain is Harris recurrent if P,{X, € B i.0.} =1 for all x.
Here P,{A} denotes the probability that event A happens when a Markov chain with
transition kernel P starts at . The notation { A,, i.0.} means that sequence A,, occurs
infinitely often, i.e., > 1,4, = co. The chain is called positive recurrent if the total
mass of its invariant measure is finite; otherwise it is null recurrent (Note here we
assume the chain is m-irreducible and 7-invariant).

Theorem 2.1.5 summarizes the condition for the convergence of a Markov Chain.

The total variation norm used there is defined by
= A) — inf pu(A
||| i’}g’“( ) — inf u(4)
for a bounded signed measure p on (E,E).

Theorem 2.1.5. Suppose P is w-irreducible and mP = 7. Then P 1s positive recur-
rent and w is the unique invariant distribution of P. If P is also aperiodic, then for
m-almost all x,

1P (2, ) = 7| =0,
with || - || denoting the total variation distance. If P is Harris recurrent, then the

convergence occurs at all x. [73]
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In fact, the assumptions in Theorem 2.1.5 are essentially necessary and sufficient: if
||P"(x,-)—7|| — 0, for all z, then the chain is 7-irreducible, aperiodic, positive Harris
recurrent and has invariant distribution 7.

In practice, given a Markov chain, we need to check the following rules to guarantee

the convergence:

Rule 1. Check that 7 is a proper probability measure.

Rule 2. Check 7P = 7.

Rule 3. Check that P(-,-) is irreducible.

Rule 4. Check that P(-,-) is aperiodic.

Rule 5. Check Harris recurrence (optional).

Rule 6. Convergence diagnostics.

For Rule 6, several methods can be used to test the convergence of a Markov
Chain (see, for example, Gamerman and Lopes [20]). Rule 5 is usually optional, but
in many situations, it can be verified by the following results stated in Theorem 2.1.6

and Corollary 2.1.7.

Theorem 2.1.6. If P is recurrent, then it is Harris recurrent if and only if every

bounded harmonic function is a constant. [73]

Corollary 2.1.7. Suppose P is irreducible and 7P = 7. If P(x,-) is absolutely

continuous with respect to 7 for all x, then P is Harris recurrent. [73]
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2.1.2 Gibbs Sampling

Gibbs sampler constructs a Markov chain with invariant distribution 7 using condi-
tioning. We give a simple definition for Gibbs sampler as in Gamerman and Lopes
20]. Let # = (z1,...,74)" and x ~ m. Each component of x can be a scalar or a
vector. Assume that all full conditional distributions m;(z;|x_;),7 = 1,...,d are avail-
able, i.e., samples can be drawn from the conditional distributions. Here x_; denotes
the vector formed by knocking out z; from z, ie., x_; = (x1,..., %1, Tir1, ..., Tq).

A Gibbs sampler includes the following steps:
Step 1. Set initial value z(¥.

Step 2. Based on current sample x, obtain a new sample = through successive

generations of values:

i‘l ~ 7T1(]31|I‘27...,l’d),
~%2 ~ 7T2(x2|'%17x37"'7xd)7
Tq ~ wa(va|Ti,. .., Tq-1);

Step 3. Repeat step 2 until convergence is reached.

Example 2.1.8. Consider E =R?. z € E can be written as x = (x1,23)", where z;

and xo represents the two coordinates of x. Assume x ~ 7, with

1
7(x) o C'exp {—5(33% + zizs + x%)} ,
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where C' is a constant. From here we can easily find that the conditional density
m1(z1|T2) o c(m2) exp{—3x}(x} + 1)} and mo(zs|z1) x c(x1) exp{—323(z? + 1)}, for
c(x1) and c(xq) functions of x1 and xs, respectively. This indicates that x1|xe ~

N (O, ﬁ), and xs|xy ~ N (O ) A Gibbs sampler can thus be constructed as

1
) 1423

follows:
Step 1. Initialize x.

Step 2. For current value of x, obtain a new sample T through successive genera-

tions of values

- 1
Biler e NO ),
2
U 1
113'2’.1’1 ~ N(O,m)
1

Step 3. Repeat step 2 until convergence is reached.

We now check Rule 1 to Rule 5 for the convergence of this Gibbs sampler. We first
find the transition kernel P(x, A) = Pr{Z € Alx} with the corresponding transition
density m(Z|x) = (1, To)| (21, x2)) = mo(To|T1)m1 (Z1]22).

Rule 1 Since n(z) o Cexp{—3(z] + 2iz} + 23)} < Cexp{—3(zi + 23)}, and

Cexp{—2%(x1+ 23)} is integrable, hence 7 is a proper probability measure.
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Rule 2 Check 7P = .

TP(A) = /E P(x, A)r(dz) = /E /A n(@|2)m(x)didz

_ // // o (1) (1 |2 (1, 0 ) iy o s i
E A
— // /R 7o (To|Z1) 1 (21| 22) (/Rw(arl,xg)dxl> d$2:| dT1dx

A

_ // /R 7r2(j2]i*1)7r1(:%1]:cg)w(xg)dxg} diy s

A

_ // :@(@m) ( /R m(:zﬂxz)w(xg)d@)]daéld&fg

_ A// [a(Fa|F1 ) (71)] 1 ds

= / w(2)dr = w(A),VA € E.
A

Rule 3 Check that P(-,-) is irreducible. It is easy to see that that 7(x) is fully

supported on R?, thus E = R?. We then have Vx € E, VA € £ with n(A) > 0,
P(x,A) = Pr{(z € Alz)} >0,

hence P(-,-) is irreducible by definition.

Rule 4 Check that P(-,-) is aperiodic. From Rule 3, the chain can get anywhere
starting from any x in one-step. Therefore P(-,-) is aperiodic.

Rule 5 Check Harris recurrent. Since w(Z|x) = mo(Z2|T1)m1(Z1]22) and P(x,-) is
absolutely continuous with respect to w, Harris recurrent follows from Corollary 2.1.7.

Therefore by Theorem 2.1.5, the Gibbs sampler constructed here converges to an
equilibrium distribution 7 in total variation, and the convergence occurs for any start-

ing values v € R2.
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2.1.3 Metropolis Sampling

Assume that 7 is absolute continuous with respect to p and let ) be a transition

kernel of the form

Q. dy) = q(x, y)u(dy).
Let E* = {z : m(x) > 0} and assume that Q(x, ET) = 1 for x € ET. Also assume
that 7 is not concentrated on a single point. For a given X,, = x, we propose a
candidate value Y = y for the next point X, 1 from the distribution Q(z,-), and

accept it with probability

a@,y):mm{%,l}.

Otherwise, the candidate is rejected and the chain remains at X, = .

If we define the off-diagonal density of a Metropolis kernel as
Pz, y) = (=, y)a(@,y) Lazy,
and set 7(z) =1 — [ p(z,y)dy, then the Metropolis kernel P can be written as
P(a, dy) = p(x, y)u(dy) +r(x)d.(dy), (2.1)

where J, denotes a point mass at x. The value r(z) is the probability that the

algorithm remains at x.

Proposition 2.1.9. For the Metropolis kernel defined above, we have

m(z)p(z,y) = 7(y)p(y, ), (2.2)

which 1s called reversibility condition.
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Proof. If x = y, then p(x,y) = 0, both sides equal 0. If x # y and 7(y)q(y,z) >
m(x)q(x,y), we have a(x,y) = 1. Therefore the left hand side(LHS) of Equation (2.2)
is

LHS = 7(x)p(z,y) = 7(z)q(z, y)a(r,y) = 7(x)q(z,y).

The right hand side(RHS) of Equation (2.2) is

RHS = 7(y)p(y, x) = 7(y)q(y, x)a(y, z) = 7(y)q(y, x)7r

Therefore LHS=RHS, the equality holds. By symmetry, the case of m(y)q(y,x) <

7(x)q(z,y) is obvious. O

Proposition 2.1.10. For the Metropolis kernel defined above, we have 7P = 7, hence

T is an invariant distribution for P.

Proof. For all A € &, we have P(x, A) = [, p(z,y)u(dy) + r(x)d,(A) by (2.1) and

TP(4) = / Pla, A)p(dz)
-/ { / p@,ym(dy)} r(@uldo) + [ 1@ (A)r(z)n(da)
_ / [ / W,y)mm(d@} u(dy) + / (@) () u(de)
— /A [ / p(y,x)ﬂ(y),u(dx)} pu(dy) + /A r(z)m(z)p(dz)
= [ = r@rutdy + [
= [ mwn(ay) = n(4)
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For the Metropolis kernel P to be irreducible, it is necessary that () is irreducible.
But this is not a sufficient condition because irreducibility of P depends on both @
and 7. If P is irreducible and 7({x : r(z) > 0}) > 0, then the Metropolis kernel is

aperiodic. [73]

Corollary 2.1.11. Suppose P is a w-irreducible Metropolis kernel. Then P is Harris
recurrent. [73]

The Metropolis sampler is very general in the sense that there exists different
choices for the “proposal” distribution ¢(x,y). Tierney introduced four types of
chains: random walk chains, independence chains, rejection sampling chains and
grid based chains [73]. One can also combine different sampling algorithms to form a

hybrid algorithm. More advanced algorithms can be found in Liu [40].

2.2 Bayesian Variable Selection

As a type of model selection method, Bayesian variable selection (BVS) has received
much attention in recent years (see, for example, Chipman, George and McCulloch
[16], Clyde and George [17] for literature reviews on this topic). In this section, we
summarize the basic scheme of Bayesian variable selection for normal linear models
based on the work of George and McCulloch ([21],[22]).

Given a dependent variable Y and p predictor variables {X;, ..., X,}, a multiple
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linear regression model takes the form

Y=0+X6+...+X,06,+¢ (2.3)

where € ~ N(0,0%). Here p can be large (e.g., larger than the number of observations).
The purpose of variable selection is to find a subset of the p predictors which can
“best” explain the response Y. This often happens in the case when some predictors
in {X,...,X,} are redundant and a parsimonious model is sought. There are totally
2P choices for such a subset. When p is moderate (e.g., less than 20), one can go
through all the possible choices and determine the best subset based on some selection
criteria such as SSE, adjusted R?, C,, AIC, BIC, etc. (see, for example, Kutner et
al. [35], Page 353-360). When p is large, however, it becomes unrealistic to compute
the criteria for all possible models. Therefore it becomes necessary to develop some
efficient computational algorithms to search for the best subset. There are some
traditional searching methods such as forward or backward selection (details can be
found in Miller ([45], Page 42-46). From a Bayesian point of view, this problem can
be solved by formulating a hierarchical mixture prior to the regression coefficients,
which is called Bayesian variable selection (BVS).

The BVS method introduces a hyper-parameter 7 to the priors of 3;, i =1,...,p,
where 7 = (71,...,7,)7. Each component of 7 takes values either 1 or 0, indicating
whether the corresponding regression coefficient is included in the subset. Posterior
inferences of 7 then help to decide the best subset of the predictor variables. The

prior distribution of ; is usually set to be a mixture normal distribution controlled
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N(0,0.1)

-1.0 -0.5 0.0 0.5 1.0

Figure 2.1:  The plot of normal densities with relatively large (1) and small (0.1)
variances.

by 7. For example, the mixture normal prior can be

/6i|7'7; ~ TiN<O, U%Z) + (1 — Ti)N(O,Ug,L-), (24)

where vy; and vy; are nonnegative parameters, and vy; is far from zero but vy; is close
to zero, i.e., vy; >> vg; > 0. Usually we set vy;’s and vg;’s to be constant for all
index . The prior (2.4) is actually a normal distribution with variance either large
or close to zero depending on the value of 7, When 7, = 0, (3; has a normal prior
with small variance vy;, and since vy; is close to zero, 3; can be a priori excluded from
the subset. Figure 2.1 shows the plot of two normal densities, one with relatively

large (1) variance and the other with small (0.1) variance. One could also introduce
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correlations between 3;’s by letting 3 = (04, ...,0,)T and write priors for 3 as
Blr ~ N(0,D.R,D,), (2.5)
where D, = diag(uy, ..., u,) with u; = ;01,4 (1—7;)ve;, and R, is the prior correlation

matrix. 7; is usually set to have a hyper-prior of independent Bernoulli(w). The prior
for By can be normal or non-informative (i.e., 7(5y) oc 1). The prior for o2 is often
chosen to be the conjugate prior of the normal likelihood, i.e., Inverse-Gamma(d;,ds).
Using Bayes theorem, the posterior distribution corresponding to the above prior

settings can be determined as:

(7, Bo, B,0°|y) o< w(yl7, Bo, B,0)7 (Bo)m(B|7)(7)7(c%). (2.6)

It is always possible to integrate out 3y, § and o2 from (2.6) to obtain the marginal
posterior 7(7|y). MCMC algorithms can thus be designed to obtain the posterior
samples of 7 based on 7 (7|y) or 7(7, By, 3, 0%|y), which will be discussed later in this
section.

As a modification of the mixture normal prior in (2.4), we can let vy; = 0 so the

prior for (3; becomes
ﬁi‘Ti ~ TZ'N(O,Ui-> -+ (1 — Ti)éo, (27)

where 0y is a point mass at zero. This prior is different from (2.4) in that when 7, = 0,
B; follows a degenerate distribution (constant), hence the joint prior =(3|7) in (2.5)

has singular covariance. In such a setting, we usually replace § by 3,, where 3, is a
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sub-vector of 5 formed by removing the zero components of 3. The prior in (2.5) is

then reduced to
57’7- ~ N(Oy DITRlTD1T>7 (28>

With this prior, the posterior distribution can be derived similarly as in (2.6).

The prior correlation R, in (2.5) can be chosen to be an identity matrix or a
so called g-prior R, o« (XTX)™! where X is a n x p design matrix when there
are n observations. The ith row of X is (X;1,...,X;,). In case of the [, prior in
(2.8), the g-prior for Ry, takes the form Ry, oc (X7 X,)™!, where X, is formulated by
removing the columns of X with zero coefficients (i.e., columns that the corresponding
7 components are 0).

The MCMC algorithm plays an important role in posterior inference. In case that
one can integrate out 3y, B and o2 from the joint posterior to obtain the marginal

posterior m(7|y), several algorithms are available to sample 7 from 7(7|y), including:

1. Gibbs Sampling. A Gibbs sampling can be used to update 7 component-

wisely. For each component 7;, compute the posterior odds

i:17 7
6, m(T : 0)y) (2.9)

where 73y = (71,...,7Ti=1,Ti41,-..,7p). Using this ratio, we can compute the
posterior probability of 7; = 1 (i.e., 6;/(1 4+ 6;)) and sample 7; based on this
probability. 7; can be updated in either a fixed or random order. It is also

feasible to update components of 7 in groups rather than one by one.
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2. Metropolis-Hastings. Metropolis-Hastings is another choice to update 7.
We first generate a candidate sample 7 from a transition kernel (a proposal

distribution) f(7|7), then update 7 by 7 with probability

g ") £
w(rly) FFI7)

1} (2.10)

For convenience, the transition kernel can be chosen to be symmetric so that
the f(7|7) term and f(7|7) term in the proposal ratio in (2.10) are canceled.
For example, the candidate sample 7 can be generated by one of the following

operations to form a symmetric transition kernel:

(a) Randomly change one component of 7.
(b) Randomly change d components of 7 with a pre-specified probability gg.

(c) With probability ¢, randomly change one component of 7; with probability
1 —¢, randomly choose two components with value 0 and 1 and swap them

([9], Page 524).

More adaptive sampling schemes can be found in Nott and Kohn [52]. Note
that the MCMC algorithm will be different if using priors in (2.7) rather than
that in (2.4). When using the point mass prior (2.7) to compute the posterior
density m(7|y), the dimension of the design matrix X need to be adjusted in
each MCMC iteration according the value of 7, i.e., for each proposed value 7,
the marginal posterior 7(7]y) need to be computed by plugging in X; rather

than X. This may speed up the computation since only part of the data are
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used in most iterations. When using the mixture normal priors in forms of (2.4),
we do not have to adjust for the size of X.

When the parameters 3y, 3 or o2

can not be integrated out from the joint
posterior, such as in the case of generalized linear models (see, for example,
Nott [53]), we need to adopt more complex MCMC algorithm for posterior
sampling. In such a case, if using point mass prior, the dimension of § varies
when the number of “1” components in 7 changes. More advanced algorithms

such as reversible jump MCMC can be applied for better mixing of the posterior

samples.



Chapter 3

A Bayesian Probit Model with
Variable Selection for Functional

Data Classification

3.1 Introduction

In this chapter, we propose a Bayesian variable selection (BVS) model to perform bi-
nary classification based on multiple functional predictors. We use a latent variable to
connect the functional predictors with the binary response. Priors for the coefficient
functions are set to be Gaussian processes which depend on a hyper-parameter that
enables variable selection. An orthonormal basis is used to decompose the covariance

function of the Gaussian process priors and to represent the functional predictors and

34



35

the coefficient functions by their basis coefficients. Posterior inference is implemented
by function approximation with truncated orthonormal basis expansion. For poste-
rior sampling, we suggest a Hybrid Gibbs/Metropolis-Hasting sampler. Simulations
show that this model produces accurate variable selection and good classification re-
sults. Application to the EEM measurements of fluorescence spectroscopy data gives

improved classification as compared to several other classification methods.

3.2 The Proposed Model

Suppose we observe n i.i.d. observations, each contains J functions. Fort=1,...,n
and j =1,...,J, denote z;;(t) as the jth function observed from the ith observation.
We assume z;;(t) € L*(T}) for a compact domain Tj. Let the response y; be a binary
class that the ith observation belongs to. Here y;’s are assumed to be condition-
ally independent given the functional predictors z;;(¢),7 = 1,...,J. Similar to the
method used in James [32] as well as Miiller and Stadtmiiller [51], a generalized func-
tional linear regression model for multiple functional predictors can be constructed

by associating a univariate latent variable z; with y; through

1 ifZi<0,
Yi =
0 ifz >0.

where

J
;= i(5)3;(s)ds + €, 3.1
. ﬁo+;/zj(S)ﬁ(S)S+€ (3.1)
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and €; ~ N (0, 1) determines a probit link between y; and z;. We assume 3;(t) € L*(T})
for y = 1,...,J. Based on the above model setting, standard functional regression
estimation paradigms, such as the EM algorithm in James [32], or the estimating
equation method in Miiller & Stadtmiiller [51], can be performed to estimate the
intercept (y and the coefficient functions 3;(¢)’s. However, these standard estimating
paradigms are designed for cases with J = 1. It is not clear whether they can be ex-
tended to models with multiple functional predictors. Also, when the z;;(¢)’s contain
redundant information, the efficiency of the model will be reduced. This motivates us
to consider the variable selection method. Due to the infinite dimensionality of func-
tional data, point-wise selection from the predictors z;;(¢) is not a practical choice.
A simple method is to discretize z;;(¢) on a finite grid and transform the problem to
a multivariate model, but this ignores the correlation between contiguous points on
the grid. In this paper, we consider variable selection in the orthogonally transformed

domain.
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3.3 Priors

Based on the model proposed in Section 3.2, we construct priors to the regression

coefficients from a functional data perspective. The priors are set to be

60 ~ N(07 h2)7
B;(t)] 77 ~ GP(0,7,4), (3.2)
7} ~ Bernoulli(w]), k€N,j=1,...,J.

Here 77 = {7 }?°, is a binary sequence of 1’s and 0’s. Components of 77 are assumed
to be independent across index k and j. GP(0,7,;) represents a Gaussian process
with zero mean and covariance function ~,;. The covariance function ~v,; can be

decomposed as

(s,t) =Y wi [rlvi + (1 — 7)) ¢i(s)di(t) (3.3)

ril$; k LTV kY0 PrlS)Pr\l)s
k=1

where {¢7}52, is a complete orthonormal basis of L?(T}), and {w}}, is a sequence
of weights such that 220:1 wi < 00. We let v; >> vy > 0, and let 14y to be close to
zero so that the factor [/v? 4 (1 — 7))13] is either v, or vy according to the binary
value of 77. Note that we treat {w]}; and {¢]}, as prior parameters and will make

specific choice of them. The values for h, vy, 1y and wi’s are also pre-specified. For

simplicity, we assume the priors for 3;(t) are independent across index j.
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3.4 Posteriors

Based on the model in Section 3.2 and prior settings in Section 3.3, posterior in-
ference can be conducted by finite dimensional approximation. Since {¢]}5, is an

orthonormal basis on L?(T}), we can expand z;;(t)’s and (3;(t)’s by

wii(t) = Y cdi(t),  Bit) =D budh(t). (3.4)

k=1 k=1
The truncated version of (3.4) can be used to approximate z;;(t) and [(3;(¢) since
S,y < oo and Y50 b < oco. Note that the orthonormal basis {¢7}32, can
be chosen to be a known basis such as a Fourier or wavelet basis. If we assume in
addition that z;;(t)’s have zero mean and ij Elz;;(t)*]dt < oo, Mercer’s theorem
and Karhunen-Loeve theorem (Ash and Gardner [3]) suggest to take the orthonormal

basis to be the eigenfunctions of the covariance operator K defined by

Kx(t) = /x(s)k‘(s,t)ds, k(s,t) = Cov(z(s),x(t)). (3.5)

In this case, the coefficients {c¢;;i, }32, are called functional principal component (FPC)

scores of w;;(t). The FPC method is different with orthonormal expansion using

known basis in that the eigenfunctions need to be estimated. Various methods for

estimating the eigenfunctions can be found in Ramsay and Silverman [60], Hall, Miiller
and Wang [28].

Once the orthonormal basis has been chosen or estimated, we can approximate

Equation (3.1) by

J Ppj
Zi = 60 + Z Z Cijkbjk + €, (36)

j=1 k=1
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where p; is the truncation parameter for the jth functional predictor. We thus transfer

the functional regression to a multiple linear regression. For convenience, denote

T
Ci - (1>Ci117"'7ci1p17"'7CiJ17"'7CinJ) ’

ﬁ: (ﬁ07b117"'7blp17'"7bJ17"'7bJpJ)T7

Equation (3.6) can be simplified to

Let Z = (z1,-..,2)", Y = (y1,.. ., yn)T and X = (Cy,...,C,)", the conditional
density 7(Z|3,Y) is
[Tz — CiB) [ (=CiB) socopniy=ty + (1 = ©(=CiB) M izzpnpy—3] » (3.8)
i=1
where ¢(+) represents a standard normal density with corresponding distribution func-
tion ®(-), and I is an indicator function. Equation (3.8) shows that the conditional
distribution of Z given 3 and Y is truncated normal.

Using the truncated orthonormal basis expansion, the priors for 3;(¢)’s in Equa-

tion (3.2) become

m(B|T) = N(0, %), (3.9)

_ (1 1 J J
where 7= (1,..., 7, ,. .., T{,...,T,,) and

Y, = D.WY2RWY2D,. (3.10)
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Here we have R = I because of the independence assumption between 3;(t)’s, and

W:diag(l,w%,...,wzl,l,...,wlj,...,w;J). (3.11)

Finally, D, = diag(h, v11, ..., Vipys .-, Vg1, ..., Vyp,) With
vir = miv + (1 — ), (3.12)

for k=1,...,p; and j = 1,...,J. The diagonal form of >, makes the components
of 8 a priori independent. v;;’s in the diagonal of D, have mixture normal priors,
which indicate whether the components of 3 have large or nearly zero variances. Such
a prior was used in George and McCulloch ([21], [22]) for Bayesian variable selection
in multiple linear regression.

The joint posterior distribution can therefore be obtained by multiplying condi-

tional distribution in Equation (3.8) with the priors, i.e.,
78,7, Z|Y) = w(Z|B,7,Y)w(B|T)n(7) (3.13)

Integrating out 3 from Equation (3.13) gives the marginal posterior density = (7, Z|Y").

Conditional on Z and Y, we have
1
m(712,Y) o | XTX + S22, 77 exp {iZTX(XTX + 2;1)—1XTZ} 7(7).(3.14)

Based on Equation (3.8), (3.13) and (3.14), we can design a MCMC algorithm for

posterior inference.
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3.5 Parameter Settings

Note that in Section 3.3, the truncation parameters p; are pre-determined parameters
for function approximation. One could set up priors for each p; and adopt reversible
jump MCMC|26] for posterior sampling. This strategy is reasonable but causes extra
complications for MCMC. Another way of determining p; is through cross-validation,
i.e., maximizing the prediction performance on test set. This method is straight-
forward but only applicable for p; = p. It is also computationally expensive since
it requires training the model on all possible choices of p. In this study, we pro-
pose a simple practical method for determining p;’s by setting an approximation
criterion. For example, if we use FPC analysis, the criterion can be set as f (pj) =
- j\k/szzl M >, for0<el<1,1< p; < K. Here A\y’s are the estimated
eigenvalues, K is the maximum number of non-zero eigenvalues. Note that f (p;) rep-
resents the proportion of variability explained by the first p; FPC’s. Empirically we
often choose ¢; between 0.99 and 1. In the case of using a known orthonormal basis,
we suggest the criterion to be f(p;) = 1 — 32, |4 (t) — iy (0|12 32, ||z ()] > e,
where 7;(t) is the estimated function of z;(¢) after truncating at p;, and || - || is the
L? norm. Similarly, the suggested value for ¢, is also between 0.99 and 1.
The weights sequences {w]}32, in Equation (3.3) determine the weight matrix
W in (3.10). Here we give a brief discussion on the choices of {wi}i‘;l First we
know that wi > 0 and >2;°  w) < oo. The main effect of w] is to shrink more on

the higher orders of the orthonormal basis {¢7(t)} toward zero so that the series in
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(3.3) converges. In this paper, we always set 1 = w] > w} > --- > 0 so that all the
weights are between 0 and 1. Let wi = m§’“‘”’”2 forall k =1,...,00 and all j, where
0 <my < 1 and my is a positive integer. Clearly, smaller value of m; or larger value
of my makes {w]}32, decay to zero faster. The values of {w] 19| are truncated at p;
to form the weight matrix W. We usually take m; between 0.7 and 1, and msy to be
1,2 or 3.

The prior parameters v; and 1y must satisfy 14 >> 1y > 0. Usual value for v, is

between 10 and 1000, and for 14 is between 0.0001 and 0.2.

3.6 Markov Chain Monte Carlo

Based on the results derived in Section 3.2 through Section 3.4, we propose the

following MCMC algorithm for posterior sampling;:

Step 0: Set up initial values for , 7 and the prior parameters for h, vy,1y and

79
wk S.

Step 1: Conditional on Y and current values of 3, sample Z from the truncated

normal distribution with density (3.8).

Step 2: Conditional on Y and current values of Z, update 7 using Metropolis-
Hastings. Based on current 7, a candidate 7¢ is firstly generated using
the “switch/swap” proposal (see Brown et al. [8]), i.e., with probability

o, randomly swap one 1 term with one 0 term; and with probability 1— ¢,
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randomly pick one position and switch it. Compute the ratio

_n(7°Z,Y)
w1 (r]Z,Y)’

rr
and update 7 = 7¢ with probability min(1, r,).

Step 3: Conditional on Y and current Z, 7, update [ from a multivariate normal

distribution:

BIZ 7Y ~ N(XTX + 7)) XTZ, (XX +57)7)

Repeat Step 1 — 3 until convergence.

This MCMC algorithm is a hybrid Gibbs/Metropolis-Hasting sampling process
since it performs Metropolis-Hasting updates within a large Gibbs sampling iteration.
Note that although 7; = 0 indicates that the jth covariate (among the concatenated
basis coefficients of the functional predictors) is not selected, we do not remove this

covariate in the MCMC iteration.

3.7 Simulation Study

Two simulations are conducted to evaluate the performance of the proposed BVS
model on functional data classification. Simulation 1 uses only one functional predic-
tor, i.e., J = 1 in Equation (3.1). For simplicity, the functional predictor is generated
using only 5 orthonormal cosine bases on interval [0, 1]. Simulation 2 considers mul-

tiple functional predictors for each observation, i.e., J = 20 in Equation (3.1). Thus
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the total number of variables to be selected is relatively large. The variable selection
results are discussed and prediction results are compared with several other classifiers.

Stmulation 1: Let the sample size n = 1000, we simulate a single functional
predictor for each observation, i.e., J = 1 in Equation (3.1). Functional predictors
x;(t) are generated using the first 5 cosine bases on closed set [0,1], i.e., ¢o(t) =
1, ¢n(t) = V2cos(knt),k = 1,...,4. The mean curve is determined by cosine co-
efficients ¢ = (—1.12,—1.82,7.77,2.15, —-3.25). By adding an independent random
error N(0,1) to each component of ¢, we generate the functional predictor for each
observation. For the true coefficient function [3(t), we set the first 5 cosine bases
scores as by = b3 = by = 0, by = 5, and b; = —4, corresponding to the true value of
7=1(0,1,0,0,1)T. Latent variables z; are generated using Equation (3.1) by numeri-
cal integration. Here the true (3 is set to be —3.5. Binary responses y; are generated
from the sign of z;. We randomly take 800 observations as training set and the rest
as test set. Note that in this simulation, the way of functional data generation is
actually multivariate, in the sense that all the true parameters are pre-defined as the
coefficients of a fixed number of cosine bases. This simplified simulation helps to
verify our proposed model and MCMC algorithm in a straightforward way.

The proposed model is applied to the above simulated data. For convenience of
comparing the estimated regression coefficients with the true on their basis coeffi-
cients, we choose to use cosine basis to approximate the functional predictors. The

criterion in Section 3.5 with co = 0.99 gives the truncation parameter p = 5. This
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True MLE BVS
r 3 5 SE| B SE| 9%C.I W
25% 97.5%

- -3.5(-2.28 1.02|-277 046  -3.67 -1.88 | —
0 0 |012 0.11 | 0.00 0.00 | 0.00 0.00 |0.0
1 5 | 441 037|437 039] 364 5.18 | 1.0
0 0 001 012 0.00 0.00} 0.00 0.00 |0.0
0 0 |-0.25 0.12 | 0.00 0.00 | 0.00 0.00 | 0.0
1 -4 |-351 030]-344 0.31]-4.09 -2.87 |1.0

Table 3.1:  Simulation 1: the estimation of # compared with maximum likelihood
estimation(MLE). Note that w; indicates P{7; = 1}. BVS: The Bayesian variable
selection model proposed in Section 3.2.

model is trained on the training set using the MCMC algorithm stated in Section 3.6,
with w;, = w = 0.2, R = I, vy = 100, and vy = 0.001. The weight sequence {wy}°
is set by the method stated in Section 3.5 with parameters m; = 0.9, mo = 1. The
Markov chain consists of 20000 iterations in total with a 3000 burn-in period. By
averaging the posterior samples of 7, we obtain the marginal posterior probability
P{r; = 1,i = 1,...,5} as (0,1,0,0,1)", which indicates that our algorithm has
picked out the correct non-zero basis (second and fifth) scores successfully. Table 3.1
lists the estimation results for (3, using the BVS model and the maximum likelihood
estimation method (the GLM with probit-link).  From Table 3.1, we see that the
posterior estimation of the coefficient scores is as good as the maximum likelihood es-
timate. The posterior prediction of the coefficient curve 3(t) can be easily computed
by conducting inverse cosine transform to the posterior samples of {by,k =1,...,5}.

Figure 3.1 shows the posterior mean of the coefficient function and the corresponding
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Posterior Mean for B(t) with 95% Credibility Band
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Figure 3.1:  Simulation 1: the posterior estimation of ((¢)and the corresponding
simultaneous 95% credibility band compared with the true value of 3(t).

simultaneous 95% credibility band, as compared with the true. The simultaneous
credibility band is obtained by finding a constant M, such that 95% of the simulated
posterior functions fall into the interval G(¢) & M&(t), Vt, where 3(t) and 6(t) are the
posterior mean and standard deviation of the cofficient functions. From Figure 3.1,
we see that the true coefficient function lies in the 95% credibility band.

Prediction can be done by applying the posterior samples of 3 to the test set using
Equation (3.6). If treating y; = 1 as diseased and y; = 0 as normal class, the out-
of-sample prediction of the test set provides sensitivity 92.7% and specificity 97.1%
with corresponding threshold 0.526. The resulting misclassification rate is 5% and

the area under ROC curve (AUC) is 0.99. Note that the sensitivity and specificity
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reported here is obtained by maximizing the sum of sensitivity and specificity. For
more information about ROC curves, see Zweig and Campbell [86].

Instead of using cosine basis for dimension reduction, we also tried to use FPC
for orthonormal basis expansion. We use the approximation criterion stated in Sec-
tion 3.5 with ¢; = 0.99, and get p = 5. The prior parameters are set to be the
same as in the cosine basis case. After 20000 MCMC iterations with a 5000 burn-in
period, prediction on the test set gives sensitivity of 96.9% and specificity of 91.3%
under threshold 0.282. The corresponding misclassification error is 6% and the area
under ROC curve (AUC) is 0.988. These results shows that using FPC for function
approximation produces as accurate prediction as using cosine basis, although the
data are generated based on a different type of basis.

Sitmulation 2: In this simulation, we evaluate the performance of the model with
multiple functional predictors. The functional predictors are generated similarly as
in simulation 1 using the first 5 cosine bases, except that now we set J = 20 in
Equation (3.1). Therefore the total number of scores K = J x p = 100. For the
coefficient scores (3, we randomly choose 24 out of 100 and set them to be nonzero,
which take values from a uniform distribution with support [—4,5] (the 0 value is
excluded). We set the intercept fy = —1.5. Latent variables and binary responses
are generated following the same way as in Simulation 1.

Similar to Simulation 1, we choose cosine basis to approximate the functional

predictors for simplicity. The approximation criterion in Section 3.5 with ¢y = 0.99
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Figure 3.2: Simulation 2: marginal posterior estimate of 7 as compared with the
true 7. The solid dots represent the true values of 7. The vertical bars indicate the
frequencies of selecting the variables during all iterations (after burn-in).

gives truncation parameter p = 5. We train the proposed BVS model using the
training set based on the transformed cosine basis scores. The model priors are
set to be wi =w=201 R=1,1 =10 and vy = 0.001. The weight sequences
{wi}z‘;l are determined by m; = 0.9, my = 1 for j = 1,...,J, as suggested in
Section 3.5. The Markov chain consists of 30000 iterations in total with a burn-in
period of 10000. Figure 3.2 shows that the estimated marginal posterior probability
Pr{m =1,...,7x = 1} as compared with the true 7. From Figure 3.2, we see that
all 24 nonzero components of 3 are corrected found. The marginal posterior estimate
for 7 matches perfectly to the true 7. These results show that, even with fairly large
number of functional predictors J = 20, the proposed model is still able to provide
accurate estimates of .

Applying the estimated regression coefficients to the test set for prediction, we
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Figure 3.3: Simulation 2: the ROC curves of different classification models. BVS:
the proposed Bayesian variable selection model. Bayes: the Bayesian probit model
(without variable selection). LDA: Linear Discriminant Analysis. KNN: K-nearest
neighbor. Note that all classifiers are based on first 5 cosine basis scores

obtain a 100% sensitivity and 96.6% specificity under the threshold 0.106. The corre-
sponding misclassification rate is 2%. We then evaluate in Figure 3.3 the prediction
performance by comparing the empirical ROC curve of the proposed model with that
of three other classifiers. All the 4 methods are based on the same function approx-
imation method, i.e., the cosine basis expansion with truncation parameter p; = 5.
Among these methods, the Bayes classifier is a Bayesian probit model with latent
variables. It has the similar structure as our proposed model but does not perform
variable selection. The LDA classifier assumes multivariate normal distribution with

common covariance matrix for both classes, and obtains the discrimination hyper-
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Method | AUC | Sens Spec | Thres | MisR
BVS | 0.997 | 100% | 96.6% | 0.106 | 2%
Bayes | 0.983 | 95.1% | 95.0% | 0.329 | 5%
LDA | 0.974 | 97.5% | 85.7% | 0.232 | 9.5%
KNN | 0.887 | 85.2% | 79.8% | 0.400 | 18%

Table 3.2:  Simulation 2: the prediction results compared with 3 other classifica-
tion methods. AUC: Area under the ROC curve; Sens: sensitivity; Spec: specificity;
Thres: The threshold corresponding the reported sensitivity and specificity; MisR:
misclassification rate. The BVS, Bayes, LDA and KNN are defined same as in Fig-
ure 3.3.

plane by equalizing the posterior densities of the two classes. Details of LDA can be
found in Hastie, Tibshirani and Friedman ([30], Page 84-90). The KNN classifier is
another popular classification method, which assigns category for the points in the
test set by voting from their £ closest points in the training set. The number of
neighbors k is determined by a 20 block cross-validation using the training set. The
criterion used in the cross-validation is the sum of sensitivity and specificity. De-
tailed prediction results are reported in Table 3.2. Note that the sensitivities and
specificities listed in Table 3.2 are obtained by maximizing the sums of sensitivities
and specificities on the ROC curves. Both Figure 3.3 and Table 3.2 show that the

proposed variable selection model provides better prediction results.

3.8 Fluorescence Spectroscopy Data Classification

After evaluated by simulation, the proposed BVS model is applied to the fluorescence

spectroscopy data introduced in Section 1.2. In this study, we choose part of the
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clinical data measured by a fixed instrument (called FastEEM2). There are 1013
EEM measurements in this dataset obtained from 521 patients. These measurements
are taken from different sites of the patient cervix and there may exist repeated
measurements at the same site. To reduce possible confounding effects due to the
tissue type, all normal measurements are from squamous tissue. After necessary pre-
processing procedures like background correction, smoothing and registration, the
EEM measurements are split randomly into a training set with 607 measurements and
a test set with 406. The proportions of diseased cases within each set are 0.096 and
0.080, respectively. Both cosine basis and FPC are used to reduce the dimension of
functional predictors. The truncation parameters are determined using approximation
criteria suggested in Section 3.5 with ¢; = 0.999 in the FPC case and ¢ = 0.99 in
the cosine basis case. The resulting p;’s vary from 5 to 3 using the FPC method,
and from 7 to 4 using cosine basis expansion. To reduce possible bias, the principal
component scores of the test set is computed based on eigenfunctions estimated from
the training set.

The proposed model is applied to the scores obtained from FPC and cosine basis
expansion. For both types of scores, we set the priors as wi = 02,1, = 100,19 =
0.001, R = I with 40000 MCMC iterations and 10000 burn-in period. The weight
sequences {wi}  are determined as suggested in Section 3.5 with parameters m; = 0.9,
mo = 1. Figure 3.4 shows the marginal posterior probabilities of 7; = 1 for all

components of 7 in the FPC case. The x-axis represents the FPC scores from a single
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excitation curve, and the y-axis represents the spectroscopy curves. Figure 3.4 shows
that, in the total 60 principal component scores, only 4 have posterior probability
greater than 0.4, and 3 of these scores are the third or higher principal components.
One can also find the joint posterior distribution of 7 based on the frequencies of

260 possible

the 7 values visited during MCMC. In this real data study, there are
choices for 7 in total. It turns out that the frequencies for the visited models are
all very small. For example, in the total of 30000 iterations(after burn-in), the most
frequently visited model has a frequency of 5%. Similar to Simulation 2, we compare
the posterior prediction result of the proposed model to that of three other classifiers
in Table 3.3. Figure 3.5 shows the corresponding ROC curves obtained from the test
set prediction. Both Table 3.3 and Figure 3.5 show that the proposed BVS model
provides a better prediction than the other three classifiers in both cases of function
approximation. FPC method gives 77% sensitivity and 82% specificity with area
under ROC curve 0.84, whereas cosine basis expansion gives higher sensitivity but
lower specificity.

To assess the convergence of the MCMC algorithm, we run multiple chains starting
from different initial values of 7. The initial values of 3 are chosen by randomly sam-
pling its components from a normal distribution. Figure 3.6 illustrates the marginal
posterior probabilities of 7 obtained from 3 different chains with different initial val-

ues. The first chain starts with a 7 with every component being assigned to be 1

or 0 randomly with probability 0.5; the second chain starts with a 7 of all 1’s; the
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Heat plot of the posterior probablity of 1=1 at each excitation wavelength
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Figure 3.4: Real data application: the posterior probability of 7, = 1 for all the
scores obtained using FPC.
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FPCA Cosine

Method | AUC Sens Spec Thres MisR | AUC  Sens Spec Thres MisR
BVS 084 7% 8% 013 18% | 0.83 8% T2% 0.12 27%
Bayes | 0.72 90% 48% 0.02  49% | 0.80 90% 67% 0.09 31%
KNN | 0.71 60% 84% 0.10 22% | 0.73 57% 8% 0.15 15%
LDA | 0.68 77% 54% 0.03 45% | 0.75 93% 54% 0.02  44%

Table 3.3: A comparison of four classification methods. FPCA: Using the functional
principal components. Cosine: Using cosine basis. Sens, Spec, MisR and BVS,
KNN, LDA, SVM are defined same as in Table 3.2 and Figure 3.3 The thresholds are
determined by maximizing the sum of sensitivities and specificities on the empirical

ROC curves.
third chains starts with a 7 of all 0’s. From Figure 3.6, we see similar patterns on
the marginal posterior probabilities, although there are slight differences at some

components.

3.9 Conclusion

We have proposed a Bayesian variable selection model for binary classification, eval-
uated its performance by simulation and applied it to fluorescence spectroscopy data.
This model uses a probit link to connect the binary responses with the functional
predictors, and conducts variable selection by introducing a binary sequence to the
Gaussian process prior of the coefficient function. The posterior inference is per-
formed by function approximation using orthonormal basis. Compared with several
other classifiers, the proposed model shows better prediction results in both simula-

tion studies and real data application.
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Chain 1 ( components of 1, are 1/0 with prob. 0.5)
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Figure 3.6: Real data application: marginal posterior of 7 obtained from different
chains trained with different initial values.



Chapter 4

A Functional Generalized Linear
Model with Functional Predictor

Selection

4.1 Introduction

This chapter continues the study of binary classification with multiple functional
predictors, with a particular emphasis on selecting functional predictors. This study
is motivated by such a fact: when multiple functional predictors are involved in
classification, some functions usually play more important role while others produce
mainly redundant information. Selecting a subset of the functions helps to reduce

the cost of data collection for future observations. For this purpose, we propose a

27
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penalized functional generalized linear model, and reduce this model through FPC
analysis to a multivariate regression with a grouped Lasso penalty. The grouped

Lasso penalty makes the selection of functional predictors feasible.

4.2 The Proposed Model

Following the notation in Chapter 3, we consider n i.i.d. observations, each obser-
vation contains J functions. For ¢ = 1,...,n and j = 1,...,J, let x;;(t) be the
jth function observed from the ith observation. Besides z;;(t), we also assume a
non-functional vector s; associated with each observation. Let binary variables y;
be the responses observed. Our functional generalized linear model is defined as

pi = Pr(y; = 1s;,x35(t),7=1,...,J), and

pi = g '(m), (4.1)

J
n, = OJO—FS?OZ—FZ/ J]U(t)ﬁ](t)dt7 (42)
j=17T;

where 7 is the domain of x;;(t), o is a univariate intercept, « is a vector of coefficients
for the non-functional predictors, and [3;(t)’s are the functional regression coefficients.
Here the link function ¢(-) is a one-to-one continuous function. The selection of
functional predictors is based on the following constraint on the functional regression

coefficients:

J
> 1Bl < m, (4.3)
j=1
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where ||f||zz = ([ f2(t)dt)"/?, m is a pre-defined constant. Note that (4.3) is a
combined constraint of L? norm and [* norm. This is an extension of the group-wise
variable selection in multivariate setting proposed by Yuan and Lin [82]. Because of
the properties of this combined constraint, we expect 3; = 0 for some j, depending
on the shrinkage factor m.

To solve the regression coefficients from the above proposed model, we apply
functional approximation using orthonormal basis expansion as done in Chapter 3.
The functional predictor z;;(t) is expanded by an orthonormal basis {¢7}32, (which

can be the estimated eigenfunctions if using FPC analysis) as

xi;(t Z c,]kgbk (4.4)

k=1
We then use a truncated version of (4.4) to approximate z;;(t). Note that if using
FPC method, the functional predictors z;;(t) should be centered at their sample mean
to satisfy the zero mean assumption of the FPC analysis, and the functions from the
test set should be centered using the mean estimated from the training set. The same

orthonormal basis is used to expand (;(¢):

)= bidi(t) (4.5)

Once the coefficients for orthonormal basis or the FPC scores have been estimated,

we can approximate equation (4.2) by

J P
n; = Qp + SzTOé + Z Z Cijkbjk, (46)

j=1 k=1
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where p; is the truncation parameter for the jth functional predictor, which can be
determined by approximation criterion stated in Section 3.5. The constraint condition

(4.3) is then approximated by

J
> lIbjllz < m (4.7)
j=1

where b; = (bj1,...,bjp,) and || - |2 stands for the Euclidean norm. A regression
with constraint in form of (4.7) is called “grouped Lasso” by Yuan and line [82].
Functional predictor selection can thus be performed through selecting variables in
(4.6) under this constraint, i.e., if one curve x;(t) is selected, then the coefficients
bjr,k =1,...,p;, will all be non-zero.

The grouped Lasso method originates from the Lasso (Least Absolute Shrink-
age and Selection Operator), which was first proposed by Tibshirani|[72] for model
selection in linear regression. The basic idea of Lasso is to find a subset of the predic-
tors with non-zero coefficients by applying a [; constraint to the regression coefficients
based on the ordinary least square estimation. Yuan and Lin [82] extended the regular
Lasso to the case where the predictors can be grouped, such as multi-factor ANOVA.
They combine the [; and [l constraints so that the resulting model selects variables
at the group level and is invariant under group-wise orthogonal transformation. To
solve our problem based on the approximated model (4.6) and (4.7), we borrow the
algorithm proposed by Meier et al. [43], where they extended the group-wise lasso re-

gression of Yuan and Lin [82] to a logistic regression setup. Suppose the link function
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in (4.1) is a logit link, i.e.,

the estimate can be obtained by minimizing the convex function

Qx(0) = —1(0) +Azs(pj)\|bjug, (4.9)

where 6 = {ag, a,b;,j =1,...,J}, and [(-) is the log-likelihood function

1(0) => {yimi —log(1 + exp(n;))}. (4.10)

i=1

Here s(p;) is a rescaling parameter which adjusts for the penalty according to the
dimensionality of b;, and is usually set to be /p;; A > 0 is a tuning parameter
controlling the amount of penalty. Note that in the model of Meier et al. [43], only one
term, the intercept term, is unpenalized. However, in our proposed model, in addition
to the intercept ag, we also allow the coefficients of nonfunctional predictors, a, to
be unpenalized. Meier et al. stated the attainability of the minimum and provided
a proof. Actually, the attainability holds only when some conditions are satisfied.
Here we provide a general sufficient condition under which the minimum of (4.9) is

attained.

Proposition 4.2.1. Suppose that 0 < >."  y; < n,A > 0,s(p;) > 0,Y4, and the

design matrix

T
1 21 111 --- Cipy --- -oo Cigr -.. Ciljpy

T
1z, e o Cpipy oo oo Cpgio-o. Cnup,
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is a n by m matrix of rank m, n > m. If the maximum likelihood estimator for the
logistic regression (with log-likelihood in the form of Equation(4.10) exists, then (4.9)
has an unique minimizer 0*.

The proof of Proposition 4.2.1 is in Appendix B. Meier et al. [43] proposed a Block
Coordinate Gradient Descent algorithm to solve the group lasso logistic regression and
provided a R package called grplasso. We will use this package to perform functional
predictor selection based on the approximated model in Equations (4.6) and (4.7).

The initialization of the algorithm is the same as in grplasso.

4.3 Simulation Study

We use simulation to verify the performance of the proposed method in classification
problems with multiple functional predictors. We generate n = 1000 i.i.d. obser-
vations, each contains one non-functional predictor and three functional predictors.
The non-functional predictor is generated from the Uniform|0, 1] distribution, and
the three functional predictors are constructed through cosine basis expansion using
the first 4 bases functions ¢g(t) = 1,¢(t) = V2cos(knt),k = 1,...,3 on the do-
main [0, 1]. The cosine basis coefficients of each functional predictor are generated
independently from a normal distribution with some fixed mean and variance 0.5.
We set the coefficient functions for the first and the third functional predictors to
be zero and set the coefficient function for the second to be non-zero. Figure 4.1

shows the plot of both the non-functional predictor and the functional predictors for
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Figure 4.1: Data plot of both non-functional predictors and functional predictors for
the first 50 observations used in simulation.

the first 50 observations. The binary responses y; are generated by sampling from
a Bernoulli distribution with success probability p; = (1 + exp(—m;))~!, where 7; is
computed from Equation (4.2) using numerical integration. The simulated y;’s are
well balanced, with 57.3% in the 1 class. We then randomly split the data into a
training set of size 800 and a test set of size 200.

Now we apply the proposed model to the simulated data for classification. In
the function approximation step, one can choose an orthonormal basis different from
the one in data generation. We have tried both functional principal components and

cosine basis, and obtained very similar curve selection and prediction results.
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Figure 4.2: Estimated paths of coefficient vector at different A\ values

Using function approximation with cosine basis expansion and the approximation
criterion stated in Section 3.5 with ¢y = 0.99, we obtain the truncation parameter
p; = 4. The group-wise Lasso regression algorithm of Meier et al.[43] is then applied
to the reduced scores. Figure 4.2 shows the estimation for the regression coefficients
as a function of A\. Note that for the estimated coefficient function Bj, we plot their L?
norm, i.e., ||G;]| = ,/ij 3;(t)2dt, where the function j3; are obtained by the inverse
transformation of the estimated coefficients l;j. From Figure 4.2, we see that for a
wide range of A\, 15.7 < A\ < 115, the model correctly picks out the non-zero coefficient
function (5. We also plot Bg(t) under 6 selected \’s in Figure 4.3 to compare with

the true fy(t). Table 4.1 shows the estimated coefficients (in the form of cosine



Figure 4.3:
Ba(t).
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basis scores I;j) compared with the true values under the 6 A’s. From Table 4.1,
we see that as the penalty parameter A increases, the estimated coefficients shrink
toward 0; when A = 0, the estimates are equal to the maximum likelihood estimates,
in which case all the coefficients are nonzero; when A varies from 22.4 to 89.6, the
coefficients of the first and the third curve are exactly 0, and the coefficient of the
second is nonzero. For A > 14.1, almost all the estimates are closer to 0 than their true
values. We believe that these shrinkage effects are caused by the continuous-shrinkage
property of Ridge and Lasso penalty (see Tibshirani [72]). As a side note, it has been
suggested that there may be large bias in the estimators related to the inconsistency
of the original Lasso under certain conditions, i.e., that the Lasso does not satisfy
the “oracle properties” (Fan and Li[18], Zhao and Yu [83]). Some modifications have
been proposed to overcome the drawbacks of Lasso and make the estimators satisfy
the oracle properties(see Zou [85]). In this study, we only focus on the functional
predictor selection, more research can to be done on the consistency of the grouped-
Lasso regression under the functional data setup.

We plug the estimated coefficient function Bj (t),7 = 1,2, 3 into the test set using
(4.2) to perform prediction. For each observation, the estimated success probability
p; is computed, from which we plot a ROC curve for each A. The optimal classifica-
tion point is chosen from each ROC curve to maximizes the sum of sensitivity and
specificity. Figure 4.4 shows the misclassification rate at the optimal point and the

corresponding area under the ROC curves at different values of A\. From Figure 4.4,
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Estimated coefficients at different A\ values
Coef True Values A=118 A=89.6 A=22.4 A=14.1 I=53 I=0

% 0.5 0.3 0.3 0.39 0.42 0.46 0.5

o) 1 0.63 0.64 0.82 0.87 097  1.06
b11 0 0 0 0 0 0.03 0.15
b12 0 0 0 0 0 -0.04 -0.17
b1 0 0 0 0 0 0.04 0.18
b14 0 0 0 0 0 0 -0.01
b1 1 0 0.13 0.58 0.67 0.79 0.9

bao 2 0 0.31 1.43 1.67 2.01 229
bas -3 0 -0.42 -1.92 -2.24  -2.66 -3.02
baa -1 0 -0.18 -0.84 -0.99  -1.21 -1.41
b3 0 0 0 0 0 0.02  0.03
b32 0 0 0 0 0.01 0.07  0.13
b33 0 0 0 0 0.04 0.34  0.56
bsa 0 0 0 0 0.01 0.09 0.14

Table 4.1: The estimated coefficient values compared with the true values at different
A's

we find the “best” prediction results with sensitivity(93%), specificity(73%) and an
fairly large area under ROC curve (0.88) when A is around 22.4, and the resulting
misclassification rate is 16%.

Since in practice the true basis is unknown, we also use FPC for dimension reduc-
tion and compare the results with those from cosine basis. For all the 3 functional
predictors, the approximation criterion stated in Section 3.5 with ¢; = 0.99 gives
p; = 4. Actually, the first 4 principal components take into account 100% of the
variability in the training data. Based on the 4 principal components for each curve,
we obtain the regression coefficient estimates very similar to those in Figure 4.2, ex-
cept that the scales of the cofficient norms ||3;]| are different. The prediction results

are also very close to those in Figure 4.4. FPC gives the best 93% sensitivity, 73%
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Figure 4.4: Prediction results at different A values.

specificity and 0.88 area under ROC curve under A = 22.4, with a resulting misclassi-
fication rate of 16%. Therefore, the FPC method produces exactly the same optimal
prediction for the test set as the method of using cosine basis, although they perform

dimension reduction in a different way.

4.4 Real Data Application

We apply the proposed model to part of the fluorescence data introduced in Sec-
tion 1.2, which is measured using a fixed instrument (called FastEEM3) at a fixed
clinic (British Columbia Cancer Agency, Vancouver, CA). There are 724 EEM mea-
surements made on 311 patients in this dataset. Each measurement contains 16
spectral curves. The measurements are from different sites of the cervix, and there
may exist repeated measurements for the same site. We split the data into a training

set of size 399 and a test set of size 325, with the proportions of diseased cases 0.21
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and 0.20, respectively. Two non-functional covariates are considered in this study.
The first one is the colposcopic tissue type of the measurements which is obtained
prior to the fluorescence spectroscopy measurements. There are two types of colpo-
scopic tissue — squamous and columnar, which makes this covariate a binary variable.
The second one is the menopausal status of patients, which can be categorized into
three levels: pre-, peri- and post-menopause. We use FPC to approximate the func-
tional predictors with the approximation criterion ¢; = 0.998. The resulting p;’s vary
between 2 and 3, with > ;b =41 To reduce possible bias, the test set scores (the
scores of orthonormal basis) are computed based on information from the training set
only. For example, the eigenfunctions used for computing the FPC scores of the test
set are estimated from the training set.

The group lasso logistic regression algorithm is used to estimate the regression
coefficients as \ decreases from 8.5 to 0. Due to the large number of functional
predictors, the plot of coefficient estimates is hard to visualize. In Figure 4.5, we
summarize the excitation curves (functional predictors) selected at different A values.
The x-axis represents the functional predictors indexed by excitation wavelengths.
The y-axis represents the A\ values. The black spot indicates that the estimated
regression coefficient at the given excitation wavelength is non-zero for the given A
value, therefore the corresponding functional predictor is selected. For example, we
find in Figure 4.5 that when A = 7.186, the curves at excitation wavelengths 360,

410 and 420 are selected. When A = 0, there is no penalty, hence all the curves are
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The selected functional predictiors at different A values, EEM3 Data
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Figure 4.5: The selected functional predictors (fluorescence spectral curves denoted
by excitation wavelengths) at different A values.

selected. As A gets larger, this model puts more penalty on the functional regression
coefficients, therefore selects fewer curves. At each given \ value, we can get a set
of estimated coefficients, which can be used to do prediction on the test set. We
thus determine A\ by comparing their prediction performance on the test set. Due
to the fact that the total proportion of diseased cases is small, the misclassification
rate is not a good criterion for evaluating the prediction performance (see [84], page
22 for details). In order to reduce the risk of false negatives, we wish to keep a
high sensitivity. It turns out that in such rare-disease diagnosis problems, using
the criterion that the sum of sensitivity and specificity is maximized will help to

remain a high enough sensitivity. Hence for each fixed A\, we pick a point from the
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Figure 4.6: Prediction results at different A values.

empirical ROC curve such that the sum of the sensitivity and specificity is maximized.
Figure 4.6 shows the area under ROC curve and the optimal sum of the sensitivity
and specificity at different values of \. When A = 2.209, the sum reaches its maximum
1.43, with sensitivity 86% and specificity 57%. The corresponding area under ROC
curve is 0.75, and the misclassification rate is 37%. As shown in Figure 4.5, when
A = 2.209, there are six functional predictors selected at excitations 340, 360, 400, 410,
420 and 480 nm. These selected excitation wavelengths can be used in the future for
building more cost-effective devices. In Table 4.2, we compare the prediction results
using the proposed model at A\ = 2.209 with the results from 3 other classification
methods. The corresponding empirical ROC curves are plotted in Figure 4.7. Note
that the parameter k£ used in the k-nearest neighbor method is determined by a 15-
fold cross validation based on the training set. Both Table 4.2 and Figure 4.7 show

that the 4 classification methods provide similar prediction results on the test set,
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Method Auc | MisR | Sens | Speci | Thresh | Sum
FGLM(A =2.209) | 0.75 | 37% | 86% | 57% 0.16 | 1.43
Logistic 0.72 | 43% | 88% | 50% 0.12 | 1.37
KNN 0.73 | 33% | 78% | 64% 0.23 | 1.42

LDA 0.74 | 40% | 84% | 54% 0.19 | 1.38

Table 4.2: The classification results using 4 different methods. Auc: Area under ROC
curve. MisR: Misclassification rate. Sens: Sensitivity. Speci: Specificity. Thresh:
The threshold used for sensitivity and specificity. Sum: The sum of sensitivity and
specificity. FGLM: The proposed model at A = 2.209. Logistic: logistic regression.
KNN: k-nearest neighbor. LDA: linear discriminant analysis.

in the sense that their AUC’s are all at the 0.70 level. Comparing with the other 3
methods, our proposed model (denoted as (FGLM)) does not improve the AUC too
much. However, since the main purpose of this model is functional predictor selection
rather than classification, we have gained benefits by doing inferences on functional

predictor selection without losing classification power.

4.5 Discussion

We have proposed a functional logistic regression model to perform classification and
functional predictor selection. Using the grouped Lasso penalty, the proposed model
gives information on which functional predictor will be selected if we are willing to
use a subset of the functional predictors for classification. For example, under penalty
A = 2.209, the best six functional predictors selected in our real data application are
curves at excitation wavelengths 340, 360, 400, 410, 420 and 480nm. The selected
functional predictors can be further used by different classifiers for new measurements.

In our proposed model, the tuning parameter A is important for prediction. In
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Meier et al. [43] and in our study in this chapter, a test set is used to choose A with the
best prediction performance. However, in some cases there are only a small number
of observations available and splitting out a test set is not possible. In such cases, we
can adopt some model selection criteria such as AIC, BIC or practical C),. AIC tends
to select a model with optimal prediction, whereas BIC tends to identify the true
sparse model if the true model is included in the candidate set (see Yang[77]). In the
grouped Lasso linear regression model, Yuan and Lin [82] propose an approximation
to the degree of freedom and use a C), criterion to select the tuning parameter A. It
remains an an open question whether this criterion can be extended to the logistic
regression case for selecting .

There are several aspects need to be studied in the future. First, it is necessary
to investigate the consistency properties of the estimated coefficient function g;(t),
such as the oracle property. Second, in the group Lasso algorithm, Meier et al. [43]
propose a way to find the range of the tuning parameter A, and A\ can only vary on this
pre-specified grids within this range. This method, although fast, makes it difficult
to find the precise A value that is optimal for prediction purpose. Efficient algorithms

for searching for A are necessary especially when functional data are involved.



Chapter 5

A Bayesian Hierarchical Model for
Classification with Selection of

Functional Predictors

The penalized functional generalized linear model proposed in Chapter 4 provides
inferences on selecting functional predictors. However, in our real data application,
there is another issue that is not considered by this model, the random batch effects.
In order to perform functional predictor selection and take the random batch effects
into consideration, in this chapter we extend the Bayesian Probit Model in Chapter 3
to a Bayesian hierarchical model with functional predictor selection (BHFPS). The
Bayesian hierarchical structure takes into account the random batch effects, and the

functional predictor selection is implemented through a block-wise variable selection

75
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method. Fixed effects or predictors in non-functional form are also included in this
model. As we have done in previous chapters, the dimension of the functional data
is reduced through functional principal component analysis or orthonormal basis ex-
pansion. We use a hybrid Metropolis-Hastings/Gibbs sampler for posterior sampling
and apply an Evolutionary Monte Carlo (EMC) algorithm to improve the mixing.
Simulation and real data application show that the proposed BHFPS model provides

accurate selection of functional predictors as well as good classification.

5.1 Motivation

In practical problems of functional data classification, there are often practical issues
that are handled by the models proposed in Chapter 3 and Chapter 4. One of them
is the presence of systematic effects which may be significant enough to bias classi-
fication, such as the artificial differences caused by measuring with different devices.
In Example 5.1.1, we use a toy example to show how the device difference misleads

the classification in an unbalanced design. A similar issue is addressed in Baggerly et

al. (2004).

Example 5.1.1. The following table lists the counts of the objects measured by two
devices for a binary classification problem. If we use the device difference to do
prediction, for example, we classify all the objects measured by device one to class
one, the misclassification rate is (54 50)/365 = 15%, which seems quite good but is

obviously useless since the device difference is purely artificial. Unfortunately, most
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classification algorithms can hardly recognize the sources of variation and may end up
with discriminating the objects based on the device difference. We call the variations

caused by device or other experimental difference as “batch effects”.

True class Device one Device two
Class one 300 50
Class two 5 10

In our application of fluorescence spectroscopy data introduced in Section 1.2,
several factors that are brought in by the experimental design need to be considered.
First, the data are obtained using two instruments with four optical probes located
at three clinics. A preliminary study shows that there exists significant differences
among the data from different device-clinic combinations, which puts the classifica-
tion at risk since the diseased cases are rare and distributed inhomogeneously across
these combinations, like the example shown in Example 5.1.1. Second, in addition to
device-clinic differences, it is believed that other factors, such as the tissue type of
the measurement site and the patients’ menopausal status, may confound with the
fluorescence spectroscopy information in the diagnosis. These factor effects are shown
by box-plots in Figure 5.1.

This motivates us to propose a Bayesian hierarchical model with selection of func-
tional predictors for complex functional data classification problems, where multiple

functional predictors are influenced by random batch effects and fixed effects.
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Figure 5.1: The box-plot of the first functional principle component scores of one
spectral curve (measured at excitation 340 nm) versus six device-clinic combinations
(left), two tissue types (middle) and three menopausal states (right). Systematic
differences across different levels of these factors can be seen obviously. Note that
here we only used observations from the normal class, which excludes the possibility
that the differences are caused by unbalanced proportions of diseased cases in each
level of the factors.

5.2 Bayesian Hierarchical Model with Selection of

Functional Predictors

5.2.1 The Proposed Model

Suppose that we obtain functional observations from L exchangeable batches, in which
the Ith batch contains n; observations and each observation contains J functions. For
l=1,...,L,i=1,...,npand 7 =1,...,J, let xéj(t) be the jth function observed
from the ith observation in batch [, which takes values in L?[T}], with T} the compact
domain of xl;(t). In addition to the functional observations, there are also non-

functional observations s, which is assumed to be a vector of length g. We treat the
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observations {s!,z!;(t),j = 1,...,.J} as predictors and assume the binary responses
y! to be conditionally independent given the predictors. Similarly as in model (3.1)
in Chapter 3, we introduce univariate latent variables z! which link the responses 3!

to the predictors as follows:

J
A=+ Y [ alwsar e (5.1)
Here we set the first component of st to be 1 to include the intercept term. For
all i and [, we assume ¢ to be ii.d. with distribution N(0,1), and assume that
Bi(t) € L*[T}] for all j. See Albert and Chib [2] for the use of latent variables in the
analysis of binary response data.

In many cases, some functional predictors do not contribute to the the classifica-
tion, and selecting a subset of them may actually improve the classification accuracy.
In our application of fluorescence spectroscopy data, there are also economic reasons
for using a subset of the J functional predictors. To this end, we introduce a hyper-
parameter 7 to the priors of 5; (t), where 7 = (7,...,7s) and each component takes
value either 1 or 0, indicating whether or not the corresponding functional predictor
is selected. Note that this 7 parameter is different from the 7 used in the model of
Chapter 3 in that each component determines whether the whole functional predictor

is selected or not, as we will show in the following text. The proposed priors for o
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and [3(t) are:

a~ N(0,07 a);
B(t) | 87 (1), 75, 05 ~ GP(5], 03,),
B(t) | 75 ~ GP(0,057,), (52)
7; | w; ~ Bernoulli(w;),
of | dy,dy ~ Inv-gamma(dy, dy),
where o7, 0, dy, da, w; are pre-specified prior parameters. GP(u,7) represents a
Gaussian process with mean 4(t) and covariance function v(s,t). We let 7., depend
on 7; by
Y (s,1) = im +05(1 = 1)) D wid(s)ok(). (5.3)
k=1

where {¢]}52, is a complete orthonormal basis of L?[T}]. Note that the infinite sum
in Equation (5.3) is a perfectly general form for a covariance function; it is simply
the spectral representation of a covariance function (Ash and Gardner [3]). We will
treat {¢]}3°, and {w] %, as prior parameters and make specific choices of them. In
Equation (5.3), we let 11 >> 1 > 0 and set 14 to be close to 0. Under this setting,
both S5(t) and 3)(t) have covariance functions close to 0 when 7; = 0 (i.e., the jth
functional predictor is not selected), and have relatively large variances when 7; = 1
(i.e., the jth functional predictor is selected). This type of prior is motivated by
George and McCulloch ([21], [22]) where they use mixture-normal priors for variable
selection. The wi’s in Equation (5.3) are pre-specified positive weight parameters

subject to >~ w; < oo for all j’s. We determine wi using the way suggested
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in Section 3.5 in Chapter 3. For simplicity, we assume that the priors of ﬂjl- (t) are
independent for all j and [, and priors of 7; are independent for all j. In order to
do practical posterior inference, we construct finite dimensional approximations to
the functional predictors and coefficients. This is described in detail in Section 5.2.2

below.

5.2.2 The Posterior Inference

From Equation (5.1) and the standard normal assumption of €., it is easy to see that

the conditional distribution of 2! given y!, @ and 6} (t) is a truncated normal:

Zlyis a, B5(8) ~ TN (pzy DI cop Loy + Tiisoy Ly s (5.4)

where . = (s\)Ta + z] 1 fT t)dt. Since {¢)}5°, is a complete orthonormal

basis of L*[T}], similar to (3.4) in Chapter 3, we can expand };(t) and 3}(¢) b

= Z Céjkqsi(t)? Z k¢] (5.5)
k=1

and use the truncated version of (5.5) to approximate them. If assuming that ! (t)
has zero mean and fT xlj( )?]dt < 0o, we can estimate eigenfunctions using func-
tional principal component analysis and treat them as the orthonormal basis. The
resulting coefficients {c.;, }32, are the functional principal component (FPC) scores
of :Eéj (t). These steps are similar to what we have done in Section 3.4 of Chapter 3.

Based on the estimated orthonormal basis coefficients or the FPC scores, we can
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reduce (5.1) by applying the truncated approximations in (5.5), which gives

J Dy
z = () a+ Z Z cijkbé'k + €, (5.6)

j=1 k=1

where p; is the truncation parameter for the jth functional predictor. We propose
to determine p;’s by setting a function approximation criterion as suggested in Sec-
tion 3.5. The notation of Equation (5.6) can be simplified by concatenating coeffi-
cients of the J functions to make one vector b'. The simplified form of Equation (5.6)
is:

Z, = Sia + Oy + €, (5.7)

where Z; = (2},...,2L)" and ¢ = (€},...,€,)". Here S; is a matrix of size n; x ¢

with the ith row equals (s})?, and C; is a matrix of size n; x p (p = Z}]:ﬂ?j) with

the ith row equals

! ! ! ! ! I \T
(Cﬂl?"'7Cilp17ci217"'7c’£2p27"'7c’iJ17"'7CinJ> ,
C_ L _ ( T ! ! I \T
i=1,...,n. Similarly, b = (b, ..., b5, b5y, bgys e by, 000,05, )", Based on

(5.7), the conditional distribution of the latent variables in (5.4) becomes

ny

Zilo, by, Yy ~ TN (Sia+ Ciby, ) | [ arcoy Tz + Ttsoy L yimap)s (5.8)
i=1
where Y, = (3, ... ,yf”). The truncated orthonormal basis expansion or FPC anal-

ysis also reduces the Gaussian process priors for 35(t) and (9(t) to the following

multivariate normal priors
bl’bﬂ) O-gy T~ N<b()a O-Z?ZT):

bo|T ~ N(O,USET),
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where ¥, = D,WY2RW?'2D,_. Here R is the prior correlation matrix of b, and b.
By the assumption in Section 5.2.1 that ﬁ; (t)’s are independent for all j’s, R = I,,, an

identity matrix. W is also a diagonal matrix of size p, with positive diagonal compo-

nents (wf,...,wy ,...,wy,...,wy) ). In other words, the diagonal of W concatenates
the first p; components of the weight sequence {wi}?’:l, g =1,...,J. D, is another

diagonal matrix with diagonal components

(b, .. ud ool ud ),

where ui =1+l —m), forall k=1,...,p;, j=1,...,J. Note that u{c does
not depends on k.

With the conditional distribution (5.8), the priors for «, 7 and o7 in (5.2), and
the reduced multivariate priors for b, and by in (5.9), we get the joint conditional

posterior distribution of «, b;’s, by, o2, T given Z;’s and Y;’s by
m(a,bi,..., by, bo, 08, 7|2, Y, l=1,...,L)
(5.10)
x HW(Zl|oz,bl,bo,alf,T,Y})W(bl\bo,ag,T) 7(bo|T)7 ()7 (T)7(0}).
l

The parameters «, b;’s and by can all be integrated out sequentially from (5.10), which

gives the marginal conditional posterior density
m(od, 7|2, Vi, 1 =1,...,L). (5.11)

See Appendix A for details of the integration. Based on (5.8), (5.10) and (5.11),

we design MCMC algorithms to obtain posterior samples of the parameters. The
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posterior samples of b;’s can then be used to estimate ﬁé(t)’s. For new observations,

we use the estimated (%(t)’s and the posterior samples of a for prediction.

5.3 Markov Chain Monte Carlo

Based on the model constructed in Section 5.2, we propose two MCMC algorithms for
posterior sampling. The first one is a hybrid Metropolis-Hastings/Gibbs sampler, and
the second one is a modified version of algorithm 1 which uses the EMC algorithm to

improve the mixing when the number of functional predictors is relatively large.

5.3.1 Algorithm 1
(A Hybrid Metropolis-Hastings/Gibbs sampler)
Step 0. Set initial values for b;’s, a, 7 and o}.

Step 1. For [ = 1,..., L, conditional on Y;, and current values of 0; and «, update
7 from the truncated normal distribution described in Equation (5.8) of Sec-

tion 5.2.2.

Step 2. Update of based on 7(o?|7,Z;,Y;,l = 1,...,L). Sample a proposal 57 by
log 57 = log o} + €, with € ~ N(0,4?). § is an adjustable step size. Compute

the ratio

7T(5-5|7—7 Zl7}/l7l = ]_, R ,L)&g

R, =
w(of|T, 21, Y,l=1,...,L)o}

and update o7 = ¢7 with probability min(1, R,).



Step 3.

Step 4.

Step 5.

Step 6.
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Update 7 based on w(7|oZ, Z;,Y;,l = 1,...,L). Generate a proposal 7 by
“switch/swap”, i.e., with probability £, randomly swap one 1 term with one
0 term; and with probability 1 — &, randomly pick one position and switch it.

Then let

~ w(Flog, Zi,l=1,..., L)

R, =
n(rlof, Z;,l=1,...,L)

and update 7 = 7 with probability min(1, R,).

Update « conditional on current values of o7, 7 and Z; through the conditional
distribution «|o?, 7,7, ~ N(ga,Va), where p, and V, are defined in Web

Appendix B.

Conditional on current values of «, o7, 7, Z;, update by by bola, 02,7, Z; ~

N(po, Vo) where g and V, are defined in Web Appendix B.

Conditional on current values of by, o, 67, 7 and Z;, update by, [ = 1,..., L by

bi|bo, o, 02,7, Zy ~ N(w;, Vi) where p; and V; are defined in Web Appendix B.

Repeat Step 1 — 6 until convergence.

In Appendix C, we verify that MCMC algorithm 1 converges to a unique equi-

librium distribution, which is our posterior distribution defined in Section 5.2. The

“switch /swap” proposal used in Step 6 is similar to the methods used in Brown et

al. ([8], [9]). Our simulation shows that if the number of functional predictors is

small, this type of proposal can locate the correct value of 7 within a few iterations.

However, when the number of functional predictors is large, the size of the searching
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space for 7 increases at an exponential rate. The “switch/swap”proposal can hardly
find successful proposals because of the discrete nature of the large state space, thus
results in extremely low acceptance rate (e.g., acceptance rate less than 0.1%).

In order to obtain better mixing for 7, we construct a more effective EMC algo-
rithm based on algorithm 1. The EMC algorithm is a MCMC scheme that inherits
the attractive features from both simulated annealing and genetic algorithm. It simu-
lates a population of I Markov chains in parallel, each with a different “temperature”.
The temperatures are ordered decreasingly to form a “ladder”. For each chain, the
posterior is transformed according to its temperature. Denote the target posterior
distribution as 7(6) and the temperature for the ith chain as ¢;, the transformed pos-
terior for the ith chain is 7;(#) oc 7()"/%. Depending on t;, such a transformation
makes the unnormalized target posterior density more flat or more spiky. The EMC
algorithm improves the Metropolis-Hastings updates by introducing three operations:
mutation, crossover and exchange. These operations allow both independent updates
for each chain and interactions between neighboring chains. We introduce more de-
tails of the EMC algorithm in Appendix D. More information about EMC can be
found in Liang and Wong [39], Liu [40], Goswami and Liu [24], and Bottolo and
Richardson [7].

When using the EMC algorithm, there are several crucial parameters need to be
determined: the number of chains I, temperature of each chain and the maximum

temperature. We adopt a simple method suggested by Bottolo and Richardson (2008)
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to set temperature for each chain, which uses a geometric sequence and adjusts the
common ratio in a burn-in period so that the acceptance rate for the exchange oper-
ation is close to 50%. For the number of chains and the maximum temperature, we
suggest to choose the number of chains to be around .J/2, and choose the maximum
temperature between 10 and 10® according to experience. The algorithm stated below
gives details of the EMC algorithm for our proposed model. In this algorithm, we
borrow the idea of Bottolo and Richardson [7], where they update the main parame-
ter of interest (the  parameter in their setup) using EMC with multiple chains, and
update the nuisance parameter (the 7 parameter in their setup) conditional on the

main parameter obtained from the chain with temperature 1.

5.3.2 Algorithm 2 (EMC)

Step 0. Set initial values for b’s, o, 7 and o7. And set up an initial temperature
ladder: t; >ty > ... > t; > 0 with the initial ratio of the geometric sequence
a = ti1/tiyi = 1,...,1. We adjust the temperature ladder so that ¢; is
bounded by the maximum temperature and set one temperature to be exactly
1. Let the step-size for adjusting temperature be 6, = log,(a)/n, where n
is the ratio of the burn-in period to a block size (usually 100). Set value
for parameter g, the probability of mutation and crossover, and for &, the

probability of switch and swap within the mutation step.

Step 1. Run step 1 — 2 in algorithm 1 based on the chain with temperature equals 1,
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obtain samples of Z;’s and o7. These steps should be identical with those in

algorithm 1 since temperature value 1 does not modify the posterior density.

Step 2. Conditional on current values of Z;’s and o7, update T according to the fol-
lowing steps in 2.1 and 2.2. For convenience, here we denote (7|0, Z;, Yy, =

1,...,L) as w(7|).

Step 2.1. (mutation/crossover) With probability ¢, perform a mutation step inde-
pendently for each chain, i.e. “switch” or “swap” with probability &, as
described in step 3 of algorithm 1. Denote the mutated value as 7 and
compute the log ratio logr,, = [log7(7|-) — logm(7|)] /t, where ¢ is the
temperature of the chain. Update 7 = 7 with probability min(1,7,,).
With probability 1 — ¢, perform a crossover step [/ /2] times, where [I/2]
denotes the integer part of 1/2. The crossover is conducted as follows:
selecting a pair of chains (i, j) according to some selection rules (see Liu
(2001)), and exchange the right segment of the two 7’s from a random
point. Denote the old values as (77, 77), and the crossed values as (7, 7/),

we then compute the log ratio:

logr, — log 7(7'|-) — log w(7"|-) +log 7(77]-) — log (77 |") tlog T((,79)|(7, 7))

ti t T((7,7)|(r",77))

where T'(z|y) is the transition probability from y to z. (7,77) are ac-

cepted with probability min(1, ).

Step 2.2. (exchange) Exchange 7 values from two adjacent chains I times, i.e.,
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randomly choose 7% and 77 from neighboring chains, and compute the log

ratio:
tj—t
tit;

logre = [logm(77|-) — log m('|")] ( )

exchange 7° with 77 with probability min(1, 7).

Step 3. Conditional on current values of Z;’s, o7, and current sample of 7 from the
chain with temperature 1, run Step 4 — 6 of algorithm 1 based on the chain
with temperature equals 1, obtain samples of «, by and b. This step should be

identical with Step 4 — 6 in algorithm 1.

Step 4. For every block of iterations within the burn-in period, we adjust the tem-
perature ladder according to the acceptance rate of the exchange operations
within this block. A new geometric ratio a is computed by log, @ = log, a £ d,,
where the “+” sign is used when we would like to reduce the acceptance rate
of exchange. The new temperature ladder then is applied to the next block of

iterations.

Repeat Step 1 — 4 until convergence.

The above algorithm is an extension of algorithm 1. We have applied the EMC
algorithm to the step of updating 7, while keeping the update of all other parame-
ters the same as in algorithm 1, similar to the algorithm in Bottolo and Richardson
[7]. As shown in simulation 2 and real data application, this algorithm seems work

well. However, by now we haven’t been able to figure out what the target posterior
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distribution looks like under this algorithm setup, and we haven’t been able to prove
that the target distribution associated with this algorithm will result in a station-
ary distribution for the whole chain. The proof of the convergence remains an open

problem.

5.4 Setting Parameters

In Section 5.2.1 and Section 5.2.2, we suggest to determine the truncation parameters
p; and the weights {w? }5° | using the method in Section 3.5. Besides p; and {w]}32,,

there are several other priors need to be set, including of, o3, (d1,ds), w;’s and (v,

0)-

Among these parameters, 0? and o3 are scaling parameters in the covariance of
a and ﬁ?(t)’s. We usually set them between 10 and 100. Larger values also work
but don’t have significant influence to the posterior estimation of o and (t)’s. The
parameter w; reflects the a priori belief on the probability that the jth functional pre-
dictor is selected. If no further information is available on the preference of selecting
certain functional predictor, we can set w; to be a constant across all j’s, which is the
proportion of functional predictors we expect to select. d; and dy are the parameters
of the inverse-gamma prior for the scaling parameter o7. To determine these two
parameters, our suggestion is to set up a mean and variance for the inverse-gamma

prior and solve for d; and dy. For example, if one set the inverse-gamma prior for ag

with mean 1 and variance 80, the resulting solution is d; = 2.01, ds = 0.9. On the
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setting of (11, 14), since we have scaling parameters o; and of for v, we usually fix
vy = 1 and set 1y close to zero (e.g, 2 = 107°).

Other parameters, such as ¢, ¢, £ and a, also need to be determined in the two
MCMC algorithms. Parameter § affects the acceptance rate of 0. It turns out that an
empirical value of § between 0.5 and 2 yields acceptance rate approximately between
20% and 60%. Parameter ¢ in algorithm 2 determines the probability of mutation,
which is usually set to be 0.5. Another parameter £ determines the swapping proba-
bility in step 3 of algorithm 1 and in the mutation step in algorithm 2. No significant
improvement on the acceptance rate of 7 is found when adjusting the values of &,
so we usually set it to be 0.5. The geometric ratio a in Algorithm 2 controls the

temperature ladder, and the initial value of a is usualy set to be 4.

5.5 Simulation Results

We conduct two simulation studies to evaluate the performance of the proposed model
for functional data classification. In both simulations, we generate data with random
effects and fixed effects. Simulation 1 uses only 4 functional predictors, in which case
Algorithm 1 is expected to work well. Simulation 2 raises the number of functional
predictors to 20, and algorithm 1 suffers slow mixing. Algorithm 2 is used, which

improves the mixing for posterior samples of 7.
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5.5.1 Simulation 1

We generate n = 1000 i.i.d. observations, using 2 non-functional predictors and 4
functional predictors. For the non-functional predictors, one of them is generated
from a uniform distribution on [0, 1], the other is a binary variable. The 4 functional
predictors are generated using the first 10 orthonormal cosine bases on interval [0, 1],
i.e., using ¢o(t) = 1,¢x(t) = v2cos(knt), k = 1,...,9 (see Eubank (1999) for details
of cosine series). The random effect has two levels, which result in two vectors of
coefficients: by, [ = 1,2. We set the true value of 7 to be (0, 1,0, 1), indicating that the
first and the third function do not contribute to the model, i.e., B(t) = B4(t) = 0, VL.
Other parameters used to generate the data are set as o7 = 10, o = 10, 07 = 5,
and v? = 1. The weights {w]}?°, used for the prior covariance are determined using
parameters m; = 0.8, my = 3. The binary responses are generated based on (5.1)
using numerical integration. After data generation, we randomly split the data into
a training set with 800 observations and a test set with 200 observations.

The proposed model in Section 2 is applied to the training data. We use FPC
to construct the orthonormal basis and set the approximation criterion described in
Section 5.4 to be ¢; = 0.99, which results in p; = 4 for all j. Based on the FPC
scores, the model is trained using Algorithm 1 with the following prior parameters:
02 = 0% =100, d; = 2.01, dy = 0.9, w; = 0.5, v} = 1, and 1§ = 107%. The prior
parameters for the weight matrix W is set by letting m; = 0.9, my = 2. Other

parameters in the MCMC are set as follows: § = 0.9, which gives an acceptance
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rate of o} around 45%; & = 0.5, which is the swapping probability in step 3 of al-
gorithm 1. After 10000 iterations with a burn in period of 4000, we find that the
posterior samples of 7 converge to the true 7 within 50 iterations. The estimated
marginal posterior probability P{r; = 1,5 = 1,...,4} = (0,1,0,1), indicating that
our algorithm has successfully selected the second and the fourth functional predictor
as expected. Figure 5.2 shows the autocorrelation plot of the posterior samples of
o2 and the corresponding histogram plot. We check the convergence of o7 using the
Geweke convergence diagnostic test (Geweke 1992). This test uses the first 10% and
last 50% of the posterior o samples, and yields a Z-score of —0.67, indicating appro-
priate convergence. Note that since the orthonormal bases used for estimation and
data generation are different, the posterior estimates of b;’s and by are not comparable
with the true values. Figure 5.3 shows the posterior means of the coefficient functions
and the corresponding simultaneous 95% credibility bands for the non-zero coefficient
functions, together with the true functions. The simultaneous credibility band is ob-
tained by finding a constant M, such that 95% of the simulated posterior functions
fall into the interval le (t) & M&k(t),Vt, where ﬁ;(t) and ' (t) are the posterior mean
and standard deviation of the coefficient functions. From Figure 5.3, we see that the
true coefficient functions lie in the 95% confidence bands.

After the training step, the estimated coefficient functions are applied to the test
set to get the posterior predictive probability. Treating y; = 1 as diseased and y; = 0

as normal, the prediction on the test set gives sensitivity 93% and specificity 99%,
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Figure 5.2: Result of Simulation 1: The autocorrelation plot for posterior samples
of o7 and the corresponding histogram plot. On the bottom panel, the curve on top
of the histogram is the prior density of 7.
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Figure 5.3: The posterior estimation of the non-zero coefficient functions 3%(¢) and
their 95% credibility band, compared with the true coefficient functions used to gen-
erate the data. Here j is the the index for mutiple functional predictors, and [ is the
index for batch. 5?(75)’8 are the grand means of all batch coefficients. The solid lines
denote the posterior mean; the dotted lines denote the 95% credibility bands; the
dashed lines denote the true coefficient functions. We only listed the estimations for
j = 2,4 since the functional predictors 1 and 3 are unselected and thus the associated
coefficient estimations are close to zero.
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with a total misclassification rate 4%. Note that the results reported here are obtained
by maximizing the sum of sensitivity and specificity on the emprical ROC curve (see
Zweig and Campbell (1993) for an introduction to ROC Curves).

As mentioned in Section 5.3, in Algorithm 1 we use a Metropolis-Hastings step
with a “switch/swap” proposal to update the parameter 7. In this simulation, the
searching space for 7 only has 2* possible values. The tracing of the posterior sam-
ples of 7 shows that Algorithm 1 starts from a random value, reaches the correct
value in only 6 iterations and stays there afterwards. However, as the length of 7 in-
creases, the size of the state space increases exponentially, and the samples proposed
by “switch/swap” can hardly be accepted. Simulations show that when the length
of 7 goes beyond 8, Algorithm 1 suffers extremely low acceptance rate for 7 and the
MCMC mixes very slowly. Therefore we suggest to use Algorithm 2 when more than

8 functional predictors are involved.

5.5.2 Simulation 2

To evaluate the performance of Algorithm 2 when there are a relatively large number
of functional predictors, we generate n = 1000 i.i.d. observations using the first 10
cosine bases but increase the number of functional predictors per observation to 20.
We set the true 7 to be a binary vector such that 8 out of the 20 components are 1’s.
Other parameters are set to be the same as in simulation 1. Again, we split the data

into training and test set as in simulation 1.
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Similarly as in simulation 1, in the dimension reduction step, we set the approxi-
mation criterion ¢; = 0.99, which results in p; = 4 for all j. Eight parallel chains are
used in Algorithm 2 with a maximum temperature of 100. To construct the temper-
ature ladder, we set the geometric ratio starting at 4. Other prior parameters are set
similarly as in Simulation 1. We perform 20000 MCMC iterations, in which the first
5000 iterations are used as a burn-in period to adjust the temperature ladder, and
another 5000 are treated as a second-stage burn-in period. Therefore the posterior
inference is based on the last 10000 iterations. Coded in R language, the simulation
takes about 11 hours when running on one dual-processor (900MHz Intel Itanium 2
for each) login node (83GB RAM) of a computing cluster. The final temperature lad-
der after the burn-in period adjustment is (100,6.79,1,0.031,0.002, 1.4 x 1074,9.8 x
1075,6.7 x 1077). We obtain several acceptance rates for diagnosis. The acceptance
rate of o7 is 31%. The acceptance rates of 7 for different chains in the mutation
operation are (0.25,0.02,0.001,9 x 107%,8 x 1074,6 x 1075 x 107%,4 x 107%), in
the order of the temperature ladder. The acceptance rates for crossover and ex-
change operations are 38% and 78%, respectively. We plot the estimated marginal
posterior probability P{7; = 1,7 = 1,...,20} under three selected temperatures in
Figure 5.4, together with the true value of 7. This figure shows that at temperature
100 the marginal posterior probabilities are non-zero for all components of 7. The
chains with temperature 1 and with the lowest temprature produce similar marginal

posterior probilities, and they both pick out the correct functional predictors. The
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Figure 5.4: The marginal posterior probabilities P{7; = 1,5 = 1,..., J} at 3 different
selected temperatures. The symbol x indicates the true value of each component of
T.

estimated regression coefficient functions are obtained and applied to the test set for
prediction, with a resulting sensitivity of 91%, specificity of 99% and misclassification

error of 5%.

5.6 Fluorescence Spectroscopy Data Application

The proposed model is applied to the fluorescence spectroscopy data introduced in
Section 1.2. In this dataset, every EEM measurement is an observation with 16
functional predictors, corresponding to the 16 excitation wavelengths. Our goal is to
select a subset of the 16 curves in the EEM to reduce the cost of data collection, and

perform classification based on the selected subset.
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There are totally 2414 measurements taken from 1006 patients. Each patient has 1
or more (up to 6) sites measured and some patients may have repeated measurements.
All the measurements come from 6 device-clinic combinations, which we treat as the
sources of random effects. We also consider two fixed effects: tissue-types, coded as
1,2 and menopausal status, coded as 1,2, 3, and treat them as non-functional predic-
tors in the proposed model. After pre-processing (background correction, smoothing,
etc), the total 2414 measurements are randomly split into a training set with 1353
observations and a test set with 1061 observations. This partition is conducted at
patient level, i.e., measurements from the same patient cannot exist in both training
set and test set. The proportion of diseased observations in the training and test
set are 10% and 9%, respectively. We use both cosine basis expansion and FPC to
approximate functional predictors. To avoid possible bias, the computation of FPC
scores for the test set is based on the eigenfunctions estimated from the training set.
We determine the number of basis used for each curve by setting the approximation
criterion ¢; = 0.998 for FPC, and c¢; = 0.992 for cosine basis expansion. The re-
sulting p;’s lie between 2 and 4 for each functional predictor. The priors are set as:
o2 =0} =100, d; = 2.01, dy = 0.9, w = 0.5, v; = 1, and 1y = 0.001. Using the way
described in Section 5.4, the weight matrix W is determined by setting m; = 0.8,
ms = 3. For both FPC and cosine basis expansion, we use 9 parallel chains, and set
the initial geometric ratio a = 4. The maximum temperature is 10 in the FPC case

and 5 in the cosine expansion case. Other parameters are set as: 6 = 0.9, ¢ = 0.5,



100

Table 5.1: Real Data Application: The acceptance rates for the EMC algorithm
based on two different function approximation methods. M-H denotes the Metropolis-
Hastings update. The vector values correspond to the acceptance rates of all chains
at the temperature ladder stated in the text.

Accept. rate Method using cosine basis Method using FPC’s

M-H for o7 0.457 0.439
Mutation for 7 (31,18,7,8,8,6,6,6,5) x 1072 (39,28,18,10,5,6,5,4,4) x 1072
Crossover for 7 0.23 0.20
Exchange for 7 0.44 0.48

¢ = 0.5. Similary as in Simulation 2, we perform 20000 MCMC iterations with 5000
burn-in iterations for temperature ladder adjustment, and treat an additional 5000
iterations as a second-stage burn-in period. The acceptance rates in both cases are
listed in Web Table 1. In Figure 5.5, we plot the estimated marginal posterior prob-
abilities P{r; = 1,7 = 1,...,16} for both cases. From Figure 5.5, we see that the
two basis expansion methods provide similar marginal posterior probabilities for 7,
and both methods show high probability of selecting functions at excitation 340 and
400nm, followed by functions at excitation 470 and 480nm and others. The marginal
posterior probabilities suggest the selection order of the functional predictors, higher
quantities indicating higher priority of being selected. For example, if we would like
to select 4 functional predictors, both methods of basis expansion suggest to select
functions at excitation 340, 400, 470 and 480nm. The posterior estimate for o7 is
0.253 using FPC, and is 0.248 using cosine basis expansion.

The posterior inference for functional predictor selection can also be based on
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Figure 5.5: The marginal posterior probabilities P{7; = 1,5 = 1,...,16} for both
cases basis expansions. The top panel is based on FPC, the bottom panel is based
on Cosine basis expansion.

the joint posterior distribution of 7 rather than the marginals. In Figure 5.6, we
plot the most frequently visited models for the two function approximation methods.
Figure 5.6 shows that both methods select curves at excitation wavelength 340 and
400nm with high frequency. The curves at excitation wavelength 470 or 480nm are
also selected frequently but they rarely appear in the same model.

The estimated regression coefficients are applied to the test set for prediction.
Table 5.2 lists the prediction results in comparison with 5 other classifiers. Note that
all the classifiers in Table 5.2 use both non-functional and all 16 functional predictors.
In particular, the BVS model is the Bayesian variable selection method proposed in

Chapter 3, which does not consider random effects and functional predictor selection.
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Table 5.2: The prediction on test set results using the proposed model(BHFPS) com-
pared with 5 other methods. Two methods of dimension reduction are used: cosine
series expansion and functional principal component analysis. AUC: Area under ROC
curve; MisR: misclassification rate; Sens: sensitivity; Speci: specificity; BHFPS: the
proposed Bayesian hierarchical functional predictor selection model; BHVS: Bayesian
hierarchical variable selection model; BVS: regular Bayesian variable selection model;
KNN: K-nearest neighbor; LDA: linear discriminant analysis; SVM: support vector
machine. See text for explanation of BVS and BHVS models

Using Cosine basis expansion Using FPC
Method AUC MisR  Sens  Spec AUC MisR  Sens  Spec
BHFPS 0.817 24.2% 74.7% 75.9% 0.822 21.2% 72.6% 79.4%
BHVS 0819 25.6% 76.8% 74.1% 0.824 27.2% T7.9% 72.3%
BVS 0.802 28.1% 76.8% 71.4% 0.819 30.5% 84.2% 68.0%
KNN 0.697 27.7% 62.1% 73.3% 0.718 32.1% 71.8% 74.7%
LDA 0.796 27.3% T4.7% 72.5% 0.804 25.0% 75.8% 74.9%
SVM 0.657 56.6% 85.3% 39.2% 0.679 38.4% 68.4% 61.0%

The Bayesian hierarchical variable selection (BHVS) is an extension of the BVS model
which considers random effects by a hierarchical setup, but does not perform func-
tional predictor selection. From Table 5.2, we see that the proposed method (BHFPS)
provides comparable prediction results with BHVS. Both BHFPS and BHVS obtain
slightly higher AUC scores than the BVS model does. Table 5.2 also shows that the
two orthonormal basis expansion methods are comparable in their prediction ability,
although the cosine basis expansion method has slightly lower AUC than the FPC
method. In Figure 5.7, we compare the empirical ROC curves for models listed in
Table 5.2 based on the FPC method.

Based on the functional predictors selected by the proposed model, other classi-

fication algorithms can be trained independently using the selected curves only. For
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ROC curves for the test set prediction

o
< 7] s
"“"
. e
Y R
o _| i 2 ‘._
o ., r
aild h
= o
i A M K
J / _J
> S IR
= 1 A
"u:) <! ot
c :‘ . _,_l
$ < D
o ] 1 gl
F 7 — BHFPS
~ :§ K ,.' — BHVS
S / r ...+ BVS
(N ©=+ KNN
d ‘l- ..... LDA
) == SVM
o
S -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure 5.7: ROC curves obtained by test set prediction using the proposed model
compared with 5 other classifiers, where BHFPS, BHVS BVS, KNN, LDA, SVM are
defined in table 5.2.



105

example, trainning the BHV'S model on the first 4 functional predictors selected by the
proposed model (based on the marginal posterior of 7) gives sensitivity 77.9% and
specificity 70.0%, with corresponding AUC 0.819 and misclassification rate 20.7%.
Compared with those in Table 5.2, we see that these prediction results are as good
as those based on all the 16 curves. Hence it is possible to achieve a high prediction
power by using a subset of functional predictors. Using the selected curves, a new

device can be constructed which reduces cost and saves measurement time.

5.7 Discussion

Motivated by practical problems on functional data classification, we have proposed
a Bayesian hierarchical model to deal with the situations when functional predictors
are contaminated by random batch effects. Inferences based on this model help to
select a subset of functional predictors for classification. This model is applied to
an application problem which uses fluorescence spectroscopy data for pre-cervical
cancer diagnosis. The results suggest that it is possible to build more cost-effective
device with less spectral curves. In this section, we discuss some issues related to the
proposed model.

The first one is about the prior correlation matrix of 3(¢). When setting priors
for the coefficient functions in (5.2), we assume that (%(t) are independent for all j
and [, which leads to the prior correlation matrix R = I, in (5.9) after approximation

by basis expansion. This is just a simplified prior choice. It is possible to allow the



106

priors for 35(t) to be correlated. For example, we may assume that (5(t),...,35(t))
has a multivariate Gaussian process, as done in Morris and Carroll (2006). In such a
case, it may be difficult to determine the prior correlations and the resulting posterior
computation may be complex.

Another issue is about the necessity of using a hierarchical structure to adjust
for batch effects. As we have pointed out in Section 5.1, for data obtained from an
unbalanced experimental design, classification can be easily biased by batch effects.
Algorithms which do not adjust for batch effects may result in classification based
on batch difference, rather than the disease information. Using a hierarchical model
is a natural way to model the batch structure. In our real data application, the
hierarchical models (BHFPS and BHVS) are more preferable as they account for
possible batch effects, although they may not necessarily improve prediction over
models like BVS (see Table 5.2 and Figure 5.7). In fact, we should not always expect to
improve the prediction by accounting for batch effects, since with a bad experimental
design, a classification algorithm can get prediction as good as 100% sensitivity and
specificity, by simply using the batch information (Baggerly et al., 2004).

As a side note, in our simulation and real data applications, we train the proposed
model using data from all batches, and make predictions based on observations with
the same batch information. Prediction on observations from new batches is also
applicable. However, it is natural to expect that the prediction will be worse when

predicting on new batches, since the random effect of the new batch is unknown when
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training the model.

Finally, like many other regression problems, when there exists severe collinearity
between the functional predictors, a unique solution for the “best” subset may not
be guaranteed using our proposed model. In this case, exploring functional predictor

selection from a Bayesian decision theory point of view may provide a solution.



Chapter 6

Priors for Covariance Operators in

Functional Data Analysis

In this chapter, we discuss the properties of covariance operators of functional data
and the conditions for formulating appropriate priors for such covariance operators.

We also propose a prior and prove some of its mathematical properties.

6.1 Grid Refinement Invariance Principle

Although functional data ideally live in infinite dimensional space, they can only be
collected and stored in finite dimensional (multivariate) form. They are typically
recorded either on some fine grids or in forms of finite linear combinations of basis
functions. For example, for a random function X () defined on a compact domain

T C R, one can discritize T on a grid of p points, T}, = (t1,...,t,)". A realization

108
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of X(t), z(t) can thus be stored in a vector form & = (z(t1),...,x(t,))", although
p can be very large and x(t;) can be very close to z(t;11). A linear interpolation of
Z on the grid T}, provides an approximation of x(t). Statistical methods which treat
functional data as multivariate fail to make use of the “functional structure” of the
data. The study in this chapter is motivated by a general priciple of functional data
analysis stated as follows:

Grid Refinement Invariance Principle(GRIP) As the order of approxima-
tion becomes more exact, i.e., the grids become finer or the upper limit of the basis
function expansion tends to infinity, the functional data analysis method should ap-
proach the appropriate limiting analogue of the true functional (infinite dimensional)
observations.

Under GRIP, we would like to look for functional data analysis models that are
appropriately defined in the infinite dimensional space and project them down to
finite dimensional space in implementation. This makes it necessary to investigate the
properties of functional data in infinite dimensional space. We study these properties

based on the theoretical structure of Gaussian measures.

6.2 Gaussian Measures

We follow Prato [56] to define Gaussian measures but use slightly different notations.
Let H be a separable Hilbert space with inner product (-, -) and norm |-| = /(-,-). In

this chapter, we assume that H is associated with a real scalar field. For convenience,



110

we write a sequence {xy}52, in H as (zi). Let B(H) be the Borel o—field on H.
We use L(H) to denote the Banach algebra of all continuous linear operators from
H to H, and L (H) represents the subset of L(H) which contains all symmetric and

nonnegative definite operators, i.e.,
LT (H)={A€e L(H): (Az,y) = (v, Ay),V x,y € H,and (Az,z) > 0,Vx € H}.

Furthermore, we denote as L) the subset of L(H) that are trace class operators, in
the sense that if A € Ly), then (4*A)Y/? has eigenvalues {\; }52, with Y57, Ax < oc.

The trace of A € Ly is defined as

TrA = i(Aek,ek>, (6.1)

k=1

where {ey}32, is an arbitrary complete orthonormal sequence (c.o.n.s.) of H. L(+1) (H)
represents the set of all operators in L™ (H) N Luy(H). We call operators in L?’l)(H)

S—operators.

6.2.1 Gaussian Measures Defined on Finite-dimensional Hilbert Space

For a pair of real numbers (m, s) with s > 0, we define the one-dimensional Gaussian
measure (with mean m and variance s) on (R, B(R)) by

1 _(z=m)?

umﬁ(dx):\/%e % dx.

We also allow s = 0, in which case, for all A € B(R),

1 ifmeA,
Mm,O(A) =0m(A) =
0 ifmé¢A.
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For a d-dimensional Hilbert space H and S € La)(H ), we can find the set of eigen-

vectors of S, denoted as (e, ..., e4), which is orthonormal and satisfies
Se, = \per, k=1,...,d, for some A\ > 0.

For any = € H, if x), = (x,ey),k = 1,...,d, H can be identified with R? through an

isomorphism ~:
v:H — R and y(z) = (21,...,24), Yz € H.
We then define the Gaussian measure on (R?, B(R%)), hence on (H,B(H)) by

Mm,S - ><Z:l /’Lmk,)\ka (62)

which is a product measure formed by d one-dimensional measures. It is easy to show

the following properties of finite dimensional Gaussian measures:

Proposition 6.2.1. Let m € H, S € Lzrl)(H). For pu, s defined in (6.2), we have

/ T s(dz) = m,
H

/H@,x —m)(z,x — m)m, s(dr) = (Sy,2),V y,z € H.

The characteristic function(Fourier transform) of pim s is

lZn\S(h) - / ei<h’z>um,s(dI) _ 6(m,h>—%($h,h)7 he H.
H

m and S are called the mean and covariance operator of fi,.s. Furthermore, the

Gaussian measure is uniquely determined by its characteristic function.
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6.2.2 Gaussian Measures Defined on Infinite-dimensional Hilbert Space

Now assume that H is a infinite dimensional separable Hilbert space. We first define
the mean and covariance for a measure p on (H,B(H)). Suppose [, |z|u(dz) < oo,

for any h € H, the linear functional f : H — R with

£(h) = /H (. Wypu(de), I € H,

1S continuous since
|f(R)] g/ || pu(dx) ||, h € H.
H

By Riesz representation theorem ([81], page 90), there exists a unique m € H such

that
(m. h) = /H (2, W) pld), b € H.

We call m the mean of p and write m = [, xu(dx). Now suppose [, |z|*p(dz) < oc.

We consider the bilinear map g : H x H — R such that
g(h, k) = /H<h,a: —m)(k,x —m)p(dz), h,k € H.
It is easy to see that ¢ is continuous since
lg(h, k)| < /H |z — m|?u(dx)|h||k|, h, k € H.

Again, by Riesz theorem, there is a unique linear bounded operator S € L(H) such

that

(Sh, k) = / (h,x —m){k,z —m)u(dx),h,k € H. (6.3)
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We call S the covariance of u. It is easy to show that S is symmetric and nonnegative

definite. Also, by the definition of trace in (6.1),

TrS = Z(Sek, er) = Z /H(ek,:c —m)?u(dr) = /H |z — m|*u(dz) < oo,

where the last equality is by Parseval identity (and monotone convergence theorem),

therefore S € L), (H).

Definition 6.2.2. Gaussian Measure Let m € H and S € L,

my(H). A Gaussian

measure L = {5 on (H,B(H)) is a measure p with mean m, covariance operator

S and characteristic function
—_— . ].
Mm,S(h) - eXp{Z<m7 h> - §<Sh7 h>}7 h e H.

The Gaussian measure fi, s is called non-degenerate if Ker(S) = {z € H : Sx =
0} = {0} [56]
Prato [56] shows the existence and uniqueness of a Gaussian measure through the

following proposition:

Proposition 6.2.3. For anym € H and S € Lzrl)(H), there exists a unique Gaussian

measure (= fiy,.s on (H,B(H)).[56]

Proof. We summarize Prato’s proof here. First, since H is a infinite dimensional
separable Hilbert space, we can define a projection mapping P, : H — P,(H) by
P,z =), _(z,e)ex, Vo € H. Then we have lim, P,z = z,VYax € H. This holds for

any c.o.n.s. (e;) of H. Since S € LZE)(H), there exists a c.o.n.s. (e;) and a sequence
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of non-negative numbers (A;) such that
Sek = /\kek, k € N.

The existence of such (e;) and (Ax) is shown in Theorem 1.5 (spectral representation)
by Kuo[34]. A’s are called eigenvalues and e;’s are called eigenvectors. For any
xr € H, set xj, = (z,e;). This constructs an isomorphism v between H and [* (The

space of square summable sequences) defined by
v H — 2

and v(z) = (x1),Vx € H. Thus we can identify H with /2. Now we construct the
product measure f 1= X4y, », Oover the product space R* := x72,R. The exis-
tence of  is guaranteed by the extension theorem stated in Prato’s book([56],Theorem
1.9). So it remains to show that u is a Gaussian measure with mean m, covariance
S.

For h € H, |(z, h)| < |z||h| and

([ tolutaa) < [ oputan = [ 3 stuta

< k=1

= Z/ Tt (dar) = ) (A +mi) = TeS + m[* < cc.
k=17 R k=1

Hence by dominated convergence theorem,

/H (@, ypu(de) = lim /H (Poz. hyu(da).
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But

/H<an, hyp(dx) = Z/ wihip(dr)
= Z hk/xkumk )\k dl’k thmk — <P m h> <m> h>’

as n — oo. Therefore m is the mean of pu.

To determine the covariance (operator) of u, we fix y,z € H and let

[ = mapta = m.2utde) =t [ (Pl = m). )P = m). ()

Since
/H (Fale = m). ) Pl = m), () = 3 /H (2 — m) g z(d)

= Zykzk/ Tr = M) g 0, (d) = Zym}\k = (PaSy, 2) — (5y, 2),
K=1

k=1

as n — o0. Therefore S is the covariance of p.
Finally, we verify that the characteristic function of u is that of a Gaussian mea-

sure. For h € H,

/ei<$’h>,u(dx) = lim e“P"x’h),u(dx) = lim H/em’“h’“umky,\k(dxk)
H n—oo e

; _1
_ ez(m,h>€ Q(Sh,h>.

So the characteristic function of 1 is that of a Gaussian measure with mean m, covari-
ance operator S. Therefore = fi,,, 5. Since the product measure on (R, B(R*)) is

a unique extension of (R™, B(R™)), pm s is unique. O
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Proposition 6.2.4. A non-degenerate Gaussian measure on H s fully supported.

[56]

Proof. Let B(x,r) € B(H) be an arbitrary ball with center z € H and radius r > 0.
We just need to show that pm, s(B(z,r)) > 0. Let A, = {z € H:> ] _ a7 < %}
and B, = {z € H: X521, % < 2} Then u(B(O,1) = (A N\ By) = p(A,)(B)
because A,, and B,, are independent([56],example 1.22). Clearly p(A,) > 0. It suffices

to show that u(B,) > 0 for n large enough. Now, by Markov inequality,

p(B) = 1=u(B) = 1= 5 Y [ atuta)

k=n+1
2 « )
k=n+1
for n large enough. O]

6.3 A Possible Prior for Covariance Operators

Suppose {X;}, are i.i.d. random elements taking values in a separable Hilbert space
H. Let pu(-) be a Borel measure defined on (H,B(H)) such that [}, [X;|u(dX;) < oo
and [, | X;|?u(dX;) < co. Let the mean of u(-) be zero and the covariance operator

of u(-) be A,,. Then,

(Auz,y) = /H (. 2}y, 2)u(d)
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and A, € La)(H ). In order to construct a prior for A,, we propose the following

expansion

A=Y w07, (6.4)

j=1

where w; >0 and } ; w; < oco. The operation ® is defined as
(u®v) z=ulv,z), (6.5)

for all u,v,x € H. Z;’s are a priori assumed to be i.i.d. zero mean Gaussian random
elements in H with a known covariance operator B € La)(H ). We will show that the
right hand side of (6.4) converges almost surely in L), and A is in LELl)(H ). Therefore
Ais a La)(H ) random variable. The distribution of A can be used as a prior for A,,.

To construct a prior for the distribution of (6.4), several conditions need to be
satisfied, which should be able to gaurantee that the resulting posterior is consistent.
We say that a posterior distribution is consistent if the posterior measure on an
arbitrary e-neighborhood (under some metric such as Hellinger metric) of the true
underlying distribution approaches to a point mass almost surely when the number of
observed samples approaches infinity. Proofs for posterior consistency under different
assumptions can be found in some Bayesian nonparametric literature, such as Barron,
Schervish and Wasserman [4], Ghosal,Ghosh and Van Der Vaart[23], Walker[75], and
Walker, Lijoi and Priinster[76]. Most proofs for posterior consistency assume that the
probability measures under study are absolutely continuous with respect to a o-finite
dominating measure. It remains an open question how to construct the consistency

for random functions with infinite-dimensional Gaussian measures.
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For a prior in the form of (6.4), we conjecture that A must take values from the
space of La)(H ) and the distribution of A must be fully supported on the whole space
of Lzrl)(H ). Intuitively, if we want the posterior distribution to be close to the true
density, the prior distribution must put positive mass over a neighborhood of the true
density. An supportive example can be found in Schervish’s book ([67], page 430, Ex-
ample 7.79). We will show in Theorem 6.3.1 and Theorem 6.3.4 that > 72 | w;Z; ® Z;

converges in Lzrl)(H ) almost surely and its distribution is fully-supported on Lle)(H ).

Theorem 6.3.1. Let Z; € L? be i.i.d. zero mean Gaussian random functions taking
values in H, where H is a separable Hilbert space associated with norm |- |, then the
random covariance operator Y\, w;Z; @ Zj is in La)(H) for every finite n, and
Z wj Zj ® Zj (Ef A
j=1
asn — oo for some A € LELl)<H)‘

Proof. Since the scalar field associated with H is real, (x,ay) = (ax,y) = a(z,y).

1. First, we show that Z; ® Z; is a random operator taking values in Lzrl)(H ).

Vx,y € H, we have

(Z; @ Zyz,x) = (Z;(Z;,2),2) = (Z;,2) > 0,
<Zj ® Zj%?/) = <Zj<Zj7x>ay> = <Zj7x><Zj>y> - <$’Zj ® ij>'

This proves that Z; ® Z; is positive definite and self-adjoint. To show that it

is trace class, let (e;) be a c.on.s. of H, if we denote || - |[1) as the trace class
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norm, then

1Z; @ Zjl|L,, = Z| Z; ®Z€u€z>|—z< ei)? = |Z;|* < o0.

=1

Now, for n fixed and w; > 0,Vj < n, and Vz,y € H, we have

O wiZ© Ziw,x) = wi(Z;,x)* >0, (6.6)
i=1 j=1

<Z w;Z; ® Zix, y) Zwy Zj,x){Z, ZZ ® Z;y), (6.7)
j=1

1> wiZ; ® Zillny, = Z |<Z w;Z; @ Zje;, e;)| = ij|Zj|2 <oo. (6.8)
j=1 i=1  j=1 j=1

This proves that 7 w;Z; ® Z; € L}, (H) for every finite n.

- Nowlet A, =377 | w;Z;®Zj and A= 3" w;Z; ® Z;. Note that we will also
need to show that A exists. The idea is to show that A, is a Cauchy sequence

almost surely. Let m > n, then

m m
1Am = Anllzg, =11 Y w2 @ Zillog, = D wilZi]”
j=n+1 Jj=n+1

Therefore we just need to show that Y7 . w;|Z;[* — 0, as m and n ap-
proaches infinity, which is equivalent to show that the series > w;|Z;]* con-
verges(since Z,’s are independent). This will be shown in the following (i.e.,

(a)-(c)) when we prove that A is trace class.

Firstly, we have,

A= lim ijZj ® Z; = lim A,

J=1



120

and

(Apz,z) >0 (by (6.6)) = (limA,z,z) =lim(A,z,z) >0,

by the continuity of inner-product. Similarly,
(Apz,y) = (z, Apy) (by (6.7)) = (limA,z,y) = (z,lim A, y).

Hence A is positive definite and self-adjoint. To show that A is trace class, we
just need to show that [|A|[z,, < oco. For a c.on.s. (ex) of H, since
oo [ee] o0 [ee]
WAl = 1Y w2 ® Zjllngy = > wi Y (Zje)” = wil 2,
j=1 =1 =1 j=1
it suffices to show the a.s convergence of the random series Y w;|Z;|*. We

use Kolmogrov three series theorem [63] to show this. ¥ ¢ > 0, we have

c EllZ: 2 2
() 35 PlwjlZi* > o = 5, PIZIP > £] < 3, A = Al (5 w)) <

o0, by Markov inequality and Z; € L%

(b) 32, Elwi| ZiP 1w z12 <) < 325 wiB(1Z;°) = B[ Z:P)(32; w;) < oo, by the

fact that Z; are i.i.d. and Z; € L?).

(c) We have

> Var(w;| Zi L, 2,1 <))

J

= B Zi| Yy, p <)) = D Elwil Zil* Ly 2, p <y )
- :

J
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with
0< Y Bl Z* 1,1z, p<q)] < ZCE 0312521 a2, 2<c)]

<ZcEw]|Z| | < cE|[|Z1]?] Zw]

J

and

2
0< > Ew] Zi|" 1w, z,2<0))” < (ZEwg!Zl Liw; 1z, |2<c}]> < 09,

J J

by Elw;|Z;* 1w, z,2<c}] > 0,¥j and results of part (b). Therefore,

ZVar(wj|Zj|21{wj|Zj|z<c}) < 00 a.s.

J

Thus ||Al[r,, = 3272, wj| Z;|* converges as. in Ly (H).
[

Before stating Theorem 6.3.4, we first give the definition for the support of a

measure as follows:

Definition 6.3.2. Let v be a measure defined on a measurable space (2,B8). The
support of i (denoted as supp(u)) is the set of all points w in 0 for which every open

neighborhood N, of w has positive measure, i.e.,
supp(p) = {w € Qw € Q@ = u(N,) > 0}.

In some cases, we refer to the support of a random element as the support of the
induced measure. In Definition 6.3.3, we define the induced probability measure for

a random element following Resnick ([63], page 75).
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Definition 6.3.3. Let (2, B, i) be a probability space, and suppose
X :(Q,B)— (2,8
is measurable. For A" C €V, let
XeA]l=X"1A)={w: X(w) € A}
Define the set function po X% on B’ by
po XHA) = p(X7H(A)).

Then po X~ is a probability on (', B'") called the induced probability or distribution

of X, denoted as Law[X].

According to Definition 6.3.3, it is clear that supp(Law[X]) C .

Theorem 6.3.4. If we denote the measure of the random covariance operator A =
> e wiZi®@Z; as Law[A], then Law[A] is fully supported on the whole Lzrl)(H) space,
1.€.,

supp(Law[A]) = L,

().

Proof. Let Ay be a fixed operator in L{E)(H), it suffices to show that V e > 0

P[||A_AO||L(1> < 6] > 0,

where A denotes the random operator above.
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1. We first show that the above statement holds for Ay being a finite rank op-

erator in Lzrl)(H) with rank p. Since A € La)(H), there exists orthonormal

eigenfunctions {e;}’_; and eigenvalues {b;},_, such that
Apey, = byey,
where b; > 0,Vj. Then we can write Ay = Z§:1 bje; ® e; and write

[e'e) P
Pll|A= Aollr,, < =PlI> wiZ @ Z; =Y bie; @ejllr,, <€
j=1 j=1

= € = €
> Pl Y wiZy® Zillng, < 2 ][] PlllwiZ © Zllig,, < 50—
, 3 3(n—p)
j=n+1 J=p+1
£ €
1 PlilwiZ; @ Z; — bie; @ el < o) (6.9)
j=1 3P
Now we show that all the three factors in (6.9) are strictly positive.
(a)
s € i €
Pl D wiZi ® Zille, < 3/=1-"Pl > wiZi® Zillny, > 3)
Jj=n+1 j=n+1

3 (e.0)
=1 > wiZi© Zjllny)
Jj=n+1

3
=1--E| > wilZ)).
Jj=n+1

Since Y7, w;|Z;|* converge a.s., we can take n > p and n large enough

so that 35°°  w;|Z;|* < €/6. Therefore,

S € 3e 1
Pl Y. W;Z; @ Zllug, < 5| > 1= =5>0

, €6
Jj=n+1
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(b) For p <j <n,

Plllw;Z; @ Zj||r,, < =P [wj|Zj|2 <

€
=P||Z]|* < —} >0
14 < o
by the fact that Z; is fully supported on the whole Hilbert space H (Propo-

sition 6.2.4).

(c) For j < p, we show that the map from (y/w,;/b;Z; —e;,|-|) to (w;/b;Z; @

Zj—ej®@ej,|[+||r,) is continuous so that Ve/(3p) > 0, there exists 6 > 0
such that
€
V@5 Z; = \/biesl < 8 = |lw; Z; © Z; — bie; @ e |r,, < ET

Let Z = \/w;/b;Z;, and let (e;) be the orthonormal basis of H extended
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from the eigen-basis of B, then
lw;Z; @ Z; — bje; @ ejl|r,, = Z (w;Z; ® Zj — bje; @ eje;, e;)]

:Z|wj<Zj,ei>2 bilej,e)?| = b, Z! (Z,e:)* — (ej, )

= b; (12 ={Z,e5)e; + [(Z,e3) + (s, ell(Z,e5) = (o5, e5)])

IN

b (12 = e +10Z + e )2 = e5,¢5)])

IN

b (12 =i + (12 = el + 126D Z = ¢jles )

IN

52 0 )
bj( 3 +<ﬁ+2)ﬁ>

- )
= 26% 4+ 21/b;0. (note |\/w;Z; — \/bjej| < 6 = |Z —¢;| <

vo
Therefore, we can let § be small enough so that ||w;Z;®7Z;—bje;®@e|r,,, <

31. Hence
P

Plllw;Z; @ Zj — bje; @ e, < ]>P|\/ w; Z; — \/bie;| < 6] >

by the fact that Z; is fully supported on the whole H space.
In summary, (a)-(c) show that all components in (6.9) are strictly positive.

Thus the theorem has been proved for Ay being finite rank.

2. If Ay is not finite rank, the set of finite rank LZE)(H )-operators is dense in

La)(H ), Ve > 0, so the e-neighborhood of B contains at least one finite rank



operator, say Ay. Let |[Ag — Ag[|r,, =, then

.
{14 = Allzg, < 53 A= Aol < e}
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Hence P{|[A— Ao||r,, <€} > P{[|A— Allr,, <5} >0.By 1. and 2., we have

shown that the random operator A = Z;; w;Z; ® Z; is fully supported on the

whole space of L, (H).

6.4 A Markov Chain Monte Carlo

In this section, we restrict the separable Hilbert space H to be L*(T) where T = [0, 1].

A random element X taking values in H is called a stochastic process and is usually

denoted by X (t). Suppose there are n such random processes {X;(¢)},, which are

ii.d. with Gaussian measure ji,, s, where m is the mean and X is the covariance

operator such that Ker(X) = {0}. We construct a prior for 3 using the expansion in

(6.4). The likelihood and priors are:

Xl(t) | mvz ~ M, s,
m | E ~ HO, k>
¥ = cijZj ® Zj,
j=1
Z](t> ~ o, B,

c ~ Inv-x*(da, dy).

(6.10)
(6.11)
(6.12)
(6.13)

(6.14)
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Here k, B, d, and dj, are pre-specified prior parameters, and Inv-y?(v, s*) represents

a scaled inverse chi-square distribution with density function:

s2v/2)V/? vs?
f(z;v,s%) = %x_”m_l exp{—g}. (6.15)

Note that an Inv-y?(v, s?) is equivalent to an Inv-Gamma with (v/2,vs%/2). Here
d, = v,d, = s*. We assume that Z;(t)’s are independent Gaussian with zero mean

and known covariance operator B. The operation Z; ® Z; is defined as

(Z; @ Z;)h(t) = Z;(t)(Z;(s), h(s)) = Z;(1) /T Zj(s)h(s)ds. (6.16)

We also assume that the scaling parameter c is independent of Z;(¢)’s.
The posterior inference based on the above likelihood and priors can be conducted
using finite dimensional projection, which is discussed in detail in the following sec-

tion.

6.4.1 Derivations of the Posterior Distribution

Based on the likelihood and prior settings from (6.10) to (6.14), we can do poste-
rior inference by projecting X;(f)’s on a finite grid 7}, = (¢1,...,t,)7. Denote the
discretized version of X;(t) as X; = (X;(t1), ... ,)zi(tp))T, X provides an approxima-
tion for X;(¢) as p approaches infinity. After discretization, the covariance operator
> becomes a p by p covariance matrix Z_j, and the likelihood in (6.10) becomes a

multivariate normal with density

(X |, 3) x |5 Zeap {—— Z( X, —m) S (X, — m)} , (6.17)
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where X = (X1,...,X,)7 and 7 is the discretized mean. The expansion in (6.12)
can be approximated by first projecting Zj(t)’s on 7}, then truncating the infinite
sum at a fixed number J. According GRIP in Section 6.1, if we let J — oo and
p — 00, then our posterior should converge to the “functional posterior” obtained
from (6.10)-(6.14). We write the approximated version of the priors in (6.11)-(6.13)

as follows:

Z; ~ N(0,B).

Here N(-,-) represents multivariate normal distribution. After finite dimensional
projections of the likelihood and priors, we obtain the posterior in multivariate form

as follows:

g n 1 - by = — — N
o %72 eXp{—§ (X —m)" S (X, —m)} (6.19)
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Let Ky =n% ' 4+ (kX)) = (n + %)i_l and M; = 5! <Z?:l X}>, the multivariate
normal density in the above expression can be split as:

(i, 5 X) o |K7Y "2 exp {—% (M — K7'My)" K (i — KllMl)}

1, = n — 1 1 i — — — 1 =
KIS TR RS2 exp {—5 S OXTETX, + 5MlTKllMl} (). (6.20)

i=1
The first two factors can be integrated out w.r.t. m since they form a multivariate

normal density. This gives the resulting marginal posterior as
I o L | »
T(SI1X) o | K72 IS5 kS 72 exp {—5 S OXIETX + §M1TK1‘1M1} m(%).
i=1
The above form can be further simplified by combining the |i| terms, drop the con-

stant terms, and using the simplified terms of

Ki= ()

and
1 n T n
T 1-—1 _ -1 ¥ o —1 ¥
MTK; Ml—(n—l—E) (§ sz-) ¥ <§ :Xi>.

The simplified form is

Note that in (6.21) the prior for 3 has not been given a particular form yet. If

we write Z = (Zl, Ty, ZJ)T7 according to the prior assumption in (6.18), Y is a
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deterministic function of ¢ and Z. Thus ¥ can be replaced by ¢ and Z in the likelihood

—

and the conditional prior 7(mi|%). Instead of setting up prior for 3}, we set up priors

for 7 as

n(Z) = =(e)][(Z)

J
dod (R
—dg/2—1 atld T 5—1
ox ¢/ exp{—= }exp{—§§ ZI'B™'Z;}

Jj=1

The posterior samples of 7 can be used to construct samples for >. To get the joint
posterior distribution for ¢ and Z, we just need to replace m(%) by 7(Z) in (6.21),

and replace other terms of 3, by the linear expansion in (6.18), which gives

el {——}exp{—éZZT }

J
— —»T
C UJijZj

(e, Z|1X)

1 171 - > ! ! — 7T
p{5n+) ( Xi) (czwjzjzj> (ZX) (6.22)

j=1
The above posterior distribution can be simplified once more by integrating ¢ out.

Separate all the terms containing c:

> 2 nptdg A—-B+d.d
(e, Z1X) o« ¢ R “lexp{— 2+ °1
c
J —5 1
> w;iZ;Z) exp{—EZZfB_l ]}, (6.23)
j=1 Jj=1

where

n J -1
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and

B=(n+ %)1 (i )Z') <Z ijjZf> (i )Z') : (6.25)

j=1
The first two factors in (6.23) indicate that, conditional on Z, ¢ is Inv-y2(v1, v2),
where v1 = np + d, and v2 = (A — B 4 d,d,)/vl. Therefore we can integrate them

out, which gives:

~ . _np+tda _n
— = A_B+dadb ? J = —’T : 1 J —*T —»\_1—»
7T(Z|X) X (W) ;w]Z]Z] exp —5 jz:; j B Z]
L Caprdg | J -3 1
x (A — B+ dadb> Z ijijT exp {—5 Z Z]TB_IZ]} (6.26)
7j=1 j=1

Based on the above posterior distribution, we describe our MCMC algorithm below.
In this algorithm, N is a pre-defined maximum number of iterations, ¢ is the iteration

index and we write #) as the posterior sample for parameter é in iteration i.

Step 0. Set initial values for Zj,j =1,...J.
Fori=1,..., N, run Step 1-3.

Step 1. Conditional on )Z', update 7 = (qu, e Zl)T. For j =1,...,J, sample a
new observation from the proposal distribution 2; ~ N (Z;i_l), 0I), and

calculate

R(Z9,.. F9) 26 20D ZER)

P = P Ti- J+l
>(i 26 26—1) Z(i—1 S(i—1)| 3y
w(Z,.... 29, 280 200, Z57Y|X)

Note that the numerator and the denominator can be computed using

(6.26). Update Z;Z) = Z; with probability min(1,7).
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Step 2. Conditional on Z® and X, sample ¢® from 7 (c|Z, X) = inv — y2(v1,v2),
where vl = np + d, and v2 = (}I — B+ d.dy)/vl, where A and B are

defined in (6.24) and (6.25).

Step 3. Conditional on Z®,¢® and X, sample m@ from N (uo, V) distribution,
where
. Lo (e
po = KMy = (n+ )™ (ZX>

and

J

Vo= Ki'=(n+D)7'S =+ D)7l w4 2]
j=1

This conditional distribution can be easily observed from the joint distri-

bution (6.20).

6.4.2 Notes on Some Computational Tricks

This section collects some computational tricks which are helpful to improve the
MCMC algorithm. We focus on the posterior distribution derived in (6.26). Since
the variables are all in discretized form, for simplicity, we remove the vector symbol
(the arrow on top of a variable), i.e., X and Z are the same as X and Z defined
in Section 6.4.1. Note that X is a n x p data matrix with each row a discretized

functional observation, and Z is a J X p matrix with the jth row being ZjT‘
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NOTE 1. Let W = diag(\/w1, . .., J/wy),
v/ W1 ZlT \/wlZ;‘F

W7 — 4/ W2 ZzT _ \/U)QZ;-‘

var [\ z |\ vz
Therefore Z w2 ZT = (WZ)T(WZ). In real computation, this is done by per-
forming QR decomposition for W2 so that W27 = R, where () is a matrix with
orthonormal columns and R is a upper triangular matrix. Note that such a decom-
position always exists, see, for example, Trefethen and Bau [74]. Now the linear

expansion becomes
Z w;Z; 2] = (WZ)(WZ) = RQQR = R'R.

Hence the covariance expansion in (6.18) becomes 3, = CZ;LI ugZ}ZZT = cR'R. Note
that y/cR is the Cholesky decomposition of the covariance matrix 3. In each iteration,
the MCMC algorithm updates the rows of W Z one by one using the built-in functions
grdelete and grinsert of MATLAB (The Math works, Inc., Natick, Mass., U.S.A.)
NOTE 2. For the factor exp {—% ijl Z}é—le} in (6.26). To compute matrix
inversion B~ efficiently, we first perform cholesky decomposition for B, i.e. RI R; =

B for some upper triangular matrix ;. Then B~! is obtained by

B~ = (R{Ry)™ = R{Y(R)) ™ = R (Ry1)"

0p)
o
)ﬂ
oL
L
AN
I

; (BT Z)" (R DT Z).
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NOTE 3. For the term

N -1
> (Lwaz)
i=1

we have seen from NOTE 1 that the Cholesky decomposition of the middle term

CZ‘].le WZ}-Z? is \/cR. Let T = ((y/cR)™ )T XT and write T = (T,...,T,), where

T; are the columns of T', we have

n -1
ppa ( ijz ZT) X; =) T'T; = Trace(T"T).
=1 7

For the same T,
(S5) (Suzz) (So)-Cmen

6.4.3 Simulation Results

Based on the prior proposed in Section 6.3 and the MCMC algorithm proposed in
Section 6.4, we conduct a simulation study in this section. Our data come from
n = 50 Brownian Motion paths on a time grid of [0, 1], with the number grid points
p = 60. Note that the covariance function of the Brownian Motion is K(s,t) =
min(s,t),s,t € [0,1]. Figure 6.1 shows the plot of the sample paths and Figure 6.2
shows the corresponding true covariance function.

The proposed MCMC in Section 6.4 is applied to the simulated data, with 10000
iterations and a 4000 burn-in period. We set the parameters in the priors and other

related parameters to be: £ = 100, d, = 4.01, d, = 10, 6 = 0.005, J = 150. Initial
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Brownian Motion Paths, N=50, p=60
4 T T T T

Figure 6.1: Plot of N = 50 sample paths of a Brownian Motion.

The True Covariance Function of a Brownian Motion
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Figure 6.2: The true covariance function of Brownian Motion.
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Figure 6.3: The plot of prior parameter w;.

values of Z;’s are generated from normal distribution with zero mean and identity

covariance. For the weight w;, we use the following form:
— J o\—-1 , _
wj—(l—f‘(a)) ,j—l,...,J,

where a = 100, ¢ = 10 for this simulation study. The values of w;’s are plotted in

Figure 6.3. The prior covariance for Z; is set to be
Bt t;) = exp(—0.6145[t; — t,]"/?). (6.27)

Figure 6.4 shows the plot of the prior covariance B. We use the posterior Z; samples in
each iteration to compute the posterior 5 samples, and average the posterior samples
of ¥ to obtain the final estimate. Figure 6.5 plots the posterior sample average of 5
The trace plot of the posterior samples of ¢, together with its histogram, is shown in
Figure 6.6. Figure 6.7 shows the posterior mean of ni and its 95% credible interval.

The acceptance rates of the Z;’s is between 22% and 39%.
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The Posterior Mean Estimate of the Covariance Using the Proposed Prior
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Figure 6.5: The posterior mean of the covariance function using the proposed prior.
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Trace Plot of Posterior Samples of ¢
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Figure 6.6: The trace plot of the posterior samples of ¢ and its histogram.

To compare the estimated covariance function with the true, we use two metrics
for measuring the estimation error. One is the averaged squared-error(ASE) defined

by

ASE(3, %) ZZ (6.28)

where 6;;, 0;; is the (4, j)th component of the estimated and true covariance matrix,
respectively. The second metric is called the averaged absolute error (AL1E) defined

by

ALIE(S, ) ZZ\ — o}, (6.29)

Table 6.1 lists the estimation error coming from the Bayesian estimate using the prior
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Posterior Average of m and Its 95% Credible Interval
05 T T T T T

0.4

0.3

_03 - .

0 10 20 30 40 50 60

Figure 6.7: The posterior mean of the mean function p(¢) and its 95% credible interval.

proposed in Section 6.3, and from the sample estimate, where the sample estimate

A

Ysample 18 Obtained by

! (X - X)X - X)" (6.30)

n—1
i=1

We see from Table 6.1 that, using the suggested MCMC algorithm, the Bayes estimate
based on the proposed prior gives slightly smaller error than the sample estimate.

More details of the estimation error are illustrated in Figure 6.8 and Figure 6.9,

where we plot (67, — o) at all (7, j) pairs for both estimation methods.
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Method ASE | AL1E
Bayes estimate using proposed prior | 0.0129 | 0.0881
Sample estimate 0.0193 | 0.1146

Table 6.1: The Estimation Error Comparison.

Component-wise Estimation Error for the Covariance Matrix (Bayesian Estimate)

— 0.3

0.1

0.1

Error

0.0t

Figure 6.8: Plot of the Component-wise Estimation Error for the Covariance Matrix
using the Bayesian Method.
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Component-wise Estimation Error for the Covariance Matrix (Sample Estimate)

10.2

0.1t

Error

0.0t

Figure 6.9: Plot of the Component-wise Estimation Error for the Covariance Matrix
using the Sample Estimation Method.

6.5 Inverse-Wishart Prior and its limiting Behav-
ior

In order to look for appropriate priors for covariance operators in infinite-dimensional
setup, we study the limiting behavior of Inverse-Wishart prior as the dimension (i.e.,
the number of grid points) goes to infinity. It is not clear whether there exists an
infinite-dimensional counterpart of Inverse-Wishart distribution. We start from de-
riving the limits of the first two moments of multivariate Inverse-Wishart distribution

in this section.
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6.5.1 Definition and Some Facts about Wishart and Inverse

Wishart distribution

We first give the definition of Wishart and Inverse Wishart distribution in multivariate

setup.

(1) Wishart distribution. Let ¥ be a p by p positive definite and symmetric random
matrix. We say X is of Wishart distribution with degree of freedom v and scale

matrix S, and write 3 ~ Wishart(v, S), if the pdf of ¥ is

-1

p .

11— 1

f<2\u,s>:(2”p/2wp<p1>/4Hr<—”+2 Z)) S|P exp(— (S 7))
i=1

where v > p+ 1, S is positive definite and symmetric. It can be shown that
E[X] = vS, mode(X) = (v—p—1)S for v > p+1, and the characteristic function
¢(U) = Elexp(i - tr(XU))] = |I —2iUS|7/?, where I and U are matrices of the

same size of S.

(2) Inverse-Wishart distribution. Suppose X is a p x p positive definite random

matrix, 3 ~ IW (v, S) with d.f. v and scaling matrix S, if

-1

p .

1— 1

f(E\%S):(2””/27rp(p‘1’/4HF(—V+2 Z)) [SI2E| P02 exp(—5tr(SET).
i=1

It can be shown that E[X] = —

p_ls. (Note that some literature denote ¥ ~

IW (v, S71) for the same density stated above. The form of the density functions

will be clear if one indicates the form of E[X]).
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Relation of Wishart and Inverse Wishart distribution. If A ~ Wishart(v, S), by
change of variables, we can easily show that A™' ~ [T (v, S™') with E[A™!] =

1 o : : DA | _
;=15 ' Note: the Jacobian |53 | = [A]™".

Moments of Inverse-Wishart Matrix. Siskind [69] stated the following results
about the general second-order moment of an Inverse-Wishart matrix: if ¢ is a

p X 1 constant vector, A is a p x p Wishart matrix with v > p + 3 degree of

freedom and expectation vS (i.e., A ~Wishart(v, S), by (3), A~! ~ TW (v, S71)

with E[A71] = ——=571) so

v—p—1

(v=p)v —p=3)BAT M AT = STHTST + STHETS T /(v - p - 1),

. AT A-17 . S7luTs! R Gl i)
1.e., E[A tt A ] = (V—p)(l/—p—3) —+ (V—p—l)(l/—p)(l/—p—fﬂ)'

6.5.2 Conjugate Inverse Wishart Priors for the Covariance

in Multivariate Normal Model

Suppose X;,7 = 1,...,n, arei.i.d. normally distributed random vectors with unknown

mean m and unknown variance matrix Y. If we construct a Bayesian model as:

m(Xi|m,X) = N(m, %),
w(m|X) = N(mg, 1/koX), (6.31)

W(E) = IW(V(), Ag), (632)

the resulting posterior distribution

T(Z1X1, ..., X)) = IW(7, A),



where v = Vo+n, [N\ = A0+Sn+ nkg (X—m())(X—mo)T, Sn = anl(Xz_X) (Xl—X>T

n+ko

Therefore

E[S|X1, ..., Xa] = 1/(7 —m — 1A, (6.33)

and conditional on X, we have w(m|X2, X;,...,X,) = N(m, f/), where m = —2-X +

ko

o1
i Mo and V = .

n-i—ko

6.5.3 A Simulation Study using the Bayesian Model with
Conjugate Inverse-Wishart Prior

In Section 6.4.3, we conducted a simulation to estimate the covariance of Brownian
Motions using priors proposed in Section 6.3. In comparison, the simulation is re-
peated in this simulation by using the Bayesian model stated in Section 6.5.2. We
set the scaling matrix Ay in (6.32) to be the prior matrix B used in (6.27), and set
the other two prior parameters in (6.32) and (6.31) as vy = 65 and ko = 1/10°, re-
spectively. The prior my is set to be a zero vector. For the same data generated in
Section 6.4.3, we obtain 3000 posterior samples for 3 and use their average as the
final estimate. Alternatively, since the posterior mean has an explicit form (as shown
in (6.33)), we can also compute the posterior mean directly and use it as the estimate
of ¥. In Table 6.2, the estimation errors defined by (6.28) and (6.29) are computed
for both the sample average and the posterior mean. Comparing with Table 6.1, we
find that for this simulated data, the estimation error obtained from Inverse-Wishart

prior is very similar to that from the prior proposed in Section 6.3, and both estima-



Method MSE | ML1E
Bayesian estimate (IW prior, based on 3000 sample) | 0.0126 | 0.0929
Bayesian estimate (IW prior, the posterior mean) 0.0123 | 0.0917
Sample estimate 0.0193 | 0.1146
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Table 6.2: The estimation error of the Bayes model with Inverse-Wishart prior com-
pare with that of the sample estimate.

Posterior mean of the covariance using Inverse Wishart prior
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Figure 6.10: The posterior average of the covariance using the Bayesian model with
an Inverse-Wishart prior.

tion methods give slightly smaller estimation error than the sample estimate. The
posterior mean estimate is plotted in Figure 6.10.

As the number of grid points increases, the estimation error (defined in 6.28 and
6.29) using inverse Wishart prior is supposed to increase too. To show this, we
generate n = 50 Brownian Motion paths on [0, 1] but sample them at 3 different grid

levels with the number of grid points: 11, 101 and 1000. Figure 6.11 plots the first

Brownian Motion path at all three grid levels. We set the prior parameter 1y = 2p and
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One Brownian Motion Path Sampled at Three Grid Levels: p=50,100,1000

X

0.2 0.4 0.6 0.8
t01[0,1]

Figure 6.11: One Brownian Motion path sampled at three grid levels: p=50,100,1000.

ko = 1/10%. The estimation errors of the sample estimates and the Bayesian estimates
with inverse-Wishart prior at all grid levels are listed in Table 6.3, which suggests
that the estimating errors increase as p increases, and the estimating error of Bayes

estimates (with Inverse-Wishart prior) increases faster than the sample estimates.

p | Bayes Est.(IW prior) | Sample Estimate
ASE ALIE ASE AL1E
10 | 0.0023 0.0392 0.0048 | 0.0581
100 | 0.0314 0.1303 0.0057 | 0.0647
1000 | 0.1339 0.2965 0.0058 | 0.0655
finer.

Table 6.3: The estimation error comparison (IW prior) when the sampling grid gets
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6.5.4 Limiting Behavior of the First Two Moments of the
Inverse-Wishart Distribution

Suppose that the covariance operator ¥ € L}, (H) and H = L?[0, 1]. We have
¥ L*0,1] — L?[0,1]

and for any f € L?[0,1],
S(5)= [ Ko 050t
0

where k(-,-) is the covariance kernel of ¥. Denote the discretized version of 3 on a
finite grid as ip, which is a random matrix of size p, where p is the number of grid
points. Our purpose is to find conditions such that, as p — oo, the limiting covariance
operator maps any function on [0, 1] to some function with a non-degenerate measure.
Let 3, ~ IW (1, B,). We write the discretized version of f as f, = (f(t1), ..., f(t,))".
ﬁ, can be used to approximate f by linear interpolation over the grid. Let g, = ip ﬁ,,

we will find the first two moments of g, and investigate their limits as p — co. Since

S, ~ IW(v,, B,), we have

- B
Ex|=—%2 .34
5] = (6.31)
and
e Byra™ B (o5
E[S,0a”s,) = p27 + o(2” Bye) . (6.35)
(Vp p)(’/p_p_3> (Vp_p_l)(’/p_p)<’/p_p_3)
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for all x € RP, by our previous definition of Inverse Wishart in Section 6.5.1. For the

first moment of g,,
r1— Byt
v,—p—1
by (6.34). Suppose that gp is the discretization of a covariance operator B with

kernel b(s, t),

1 P
(E[E_fp])z = 1 Z(Bp)ij(fp)j
(vp—p—1) 1
=3
= 2 b, 1) (1))
(vp—p—1) s
S NATE
= i) f (L)~
(vp—p—1) =1 p
Therefore, E[g,(s)] — Bf(s) = fol b(s,t)f(t)dt as p — oo, provided that Vp_’;_l —
1. For the second moment of g,,
L o Byfyly By
Elg,g,) = EEpfofy S0 = o
[pp] | rey d (vp —p)(vp —p—3)

(vp—p—1)(vp —p)(, —p—3)’

by (6.35). For the first term of (6.36), since

- = - =

(épﬁfgép)ij :(Bpfp)i<Bpfp>j

(3 bt t) F(0))(S bt 1) (1))
#ﬂZﬁWWﬂM?Q}%%V@%%
we have
o
BAMB, e

(vp —p)(vp —p—3)
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as p — oo, provided that ( P” — 1. Note that we have defined the ®

vp—p)(Vp—p—3)

operation in (6.5) and (6.16). Here Bf ® Bf is defined in a similar way, i.e., (Bf ®

Bf)x = Bf(Bf,z), and (Bf,z) = fol Bf(s)z(s)ds. For the second term of (6.36),

fTB,f = Zf ) bltis ) (1))

p p

= p? ZZf b(ti,t;) )]%
where > 7, ?:1 F(t)b(ti, ;) f( fo fo Vf(t)dtds = (f, Bf), as p —
co. Therefore, for any x € L?[0, 1] with a discretized version &, = (z(t1),...,z(t,))7,
: (BT B.7)%)
(v —p—1)(p —p)(vpy —p—3) P R
_ r’ ST F b )Y !
—(Vp —p— 1)(V —p)<V —p— 3) (; ]Zl f(t )b(tza t])f(t])pQ)(; b(tlatT)x(tT>p)

as p — oo, provided that ( — 1. Thus the second term of (6.36)

vp—p—1)(vp—p)(vp—p—3)

satisfies
B,(fI'B, p>
(v —p = 1)(¥p —p)(¥p —3)

The above results shows that E|[g,] — Bf and E[gpgg] — Bf® Bf + (f,Bf)B

— ([, Bf)B

under the condition that VLLP — 1. This implies
P

Cou(g,) = E[g}gf] — E[G,))E[g,]"

— Bf®@Bf+(f,Bf)B—-Bf @B,

hence Cov(g,) — (f, Bf)B as p — oo.
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To summarize, we have obtained the limit of the first two moments of g, = ip ﬁ,.

As the number of grid points p — oo and ﬁ — 1, we have

E[ipfz;) — Bf,

Cov(3,f,) — (f, Bf)B.



Chapter 7

Conclusion and Discussion

In summary, we have proposed three statistical models on the topic of functional data
classification, and presented a study on the covariance operator of functional data
analysis. We compare the results from previous chapters and discuss some related
issues in this chapter.

The Bayesian variable selection model proposed in Chapter 3 provides good classi-
fication performance compared with several other methods without variable selection.
The functional predictors are approximated using orthonormal basis expansion, and
variable selection is performed based on the coefficients of the orthonormal basis.
This model is novel as a functional data classification method, however, it also has
some drawbacks. First, the variable selection results depend on different choices of
the orthonormal basis. Second, the variables selected are usually hard to explain

and visualize in the original function space. Orthonormal basis such as Wavelets can
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preserve some location information, therefore may improve the model and make it
easier to explain.

The functional generalized linear model (FGLM) in Chapter 4 and the Bayesian
hierarchical model in Chapter 5 both aim to select a subset of functional predictors in
order to reduce the cost of data collection in the cervical cancer diagnosis application.
However, the selection results reported in Chapter 4 are not comparable with those in
Chapter 5 due to the fact that the FGLM model does not consider random effects, and
the real data managed by FGLM are a subset of the whole dataset that are measured
by a fixed device (and clinic). To compare FGLM with the Bayesian hierarchical
model on their predictor selection performance, we re-trained the FGLM model based
on all data and ignore the random effect. Figure 7.1 plots the predictor selection
result of FGLM using all data together with the marginal posterior of 7 obtained
in Chapter 5. Note that these two results are both based on the FPC method with
approximation criterion ¢; = 0.998. Although Figure 7.1(a) and Figure 7.1(b) have
different explanation for their own model, they show some similarities on the selection
of functional predictors, i.e., the curves with excitation wavelengths at around 340-
360, 400-420, 470-480nm have higher possibilities of being selected.

Finally, for the study of the covariance operator, besides the results obtained in
Chapter 6, there are more theoretical work that worth further investigation. First, the
consistency of the posterior needs to be constructed based on the priors introduced

in Section 6.3. Second, more computationally efficient MCMC algorithms need to
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The selected functional predictiors at different A values, ALL Data
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(a) FGLM model trained on all data: the selected func-
tional predictors at different A using function approxi-

mation with FPC.

Marginal posterior of T using FPC

10

06

posterior probablity

02

330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480

(b) BHFPS model: the marginal posterior probabilities
P{r; =1,j =1,...,16} using function approximation

with FPC.

Figure 7.1: A comparison of the functional predictor selection results of FGLM and

BHFPS.
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be developed to deal with data with large number of grids. It is also of interest to
look for the infinite-dimensional counterpart for the Inverse-Wishart distribution and
construct priors from there. Continuation of the covariance operator research will

certainly enrich the field of functional data analysis.



Appendix A

Integrating b;’s, by and o Out
Sequentially from the Conditional

Posterior (5.10).

From conditional posteriors in (5.10) and priors in (5.2) and (5.9), we have
m(o,by, ... br,bo, 03, 7|2, Y L =1,... L)
x H | K72 exp {—% zl: (0 Kb — 20 My + M K7 M) }
-exp {% Zl: (MK "M, — (Z, — Sia)" (Z — Siar)] }
coxp {30 (L2 + (03E) T b

1
exp {~gat(otn) b (TLIKG 1 lod. 20, (o)),
l
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where K; = CI' C+(023,)™" and M; = C'(Z,— Sja)+(023,) " by, L = 1,..., L. From
above, we find the conditional distribution b|«, by, 02,7, Z;,Y; ~ N(w;,V;), where
W= Kl’lMl and V; = Kl’l, for | = 1,...,L. The b’s can be integrated out from
the above conditional posterior since the first 2L factors construct L normal density
kernels. After integrating out b;’s, we can expand M, K. l_lMl and combine the terms
with by, which gives the following:

m(a, by, 00,72, Y, 1 =1,..., L)

1

o | Kyt~ exp { 5 (bg Kobo — 2b5 My + MOTKolMO)}

1 1
- exp {5M5K01M0 +5 > (2 - S0)"(CKCN = 1) (2 - S@}
!
1 _ _ ~ - _
- exp{ —5a” 020 a G AT I 2R b, (o),
!
where Ko = (02%,) 7t + L(02%,) ™! — (025,) (O K, ) (02%,) 7! and
l

My = (035,)"" Y K7'C (2 - Sia)
l

. Tt is easy to see from above that bg|ov, 02,7, Z;, Y; ~ N(uo, Vo), where po = Ky ' M,
and Vo = K;'. We can further integrate by out since the first two factors form a
normal density kernel. After integrating out by, we can expand the term M K, Mo,

combine terms of « and factor out a normal kernel for «, from where we obtain that

alo?, 7, 2, Y1, ¥l ~ N(q, Va), where pg = K~'M, V, = K,
K=Y 58S+ (o)™ =Y sfaK'cl's,
l l

~ QKOS (0p2) T K o) T (Y KOS,
l l
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and
M = ZSZTZZ ZSZT(JZ ol z,— ZK 'S (038 " Ky o s ) O KT P 2.
l

We finally can integrate out « to obtain the marginal conditional posterior of o7 and

7, conditional on values of Z;’s and Y;’s, which gives

m(o, 712, Y, l=1,...,L)

| | _
x exp{§MTK 1M+§(ZZ:KI Lol z) (o?s,) Ky o?x,)” ZK Lol z) }
1 _ ~ _ _ _ _
: exp{§§l:ZzTCzKl 1OzTZz}UKI V21 Ko 1/2(fl[|Kz| V) op e R |og s, T2
m(oy)m(T),

where K, M, K, and K;’s are defined in the above derivation.



Appendix B

Proof of Proposition 4.2.1

The proof of Proposition 4.2.1 uses a result stated in the following lemma.

Lemma B.0.1. Let f : R" — R be a strictly convex function with a minimizer T,
and let g : R" + [0,00) be a convex function. Then f + g has a unique minimizer
x* in R™.  Proof: Let h(z) = f(x)+ g(x). It is easy to show that h(x) is strictly
convex from the definition. We claim that the existence of a minimizer x of f implies
that h is coercive, which means h(x) — oo as ||x|| — oo. The coerciveness and strict
convexity of h implies the existence of a unique minimizer x*.

To show that h is coercive, it is sufficient to show that f is coercive (since g > 0).
The minimizer & of f is the unique minimizer of f by strict convexity. Also, f is
convex hence is continuous on R" (see [66],page 82). Thus V r > 0,V z such that
||z — Z|| > r, we claim

£(@) > Yl — ]+ /(@)
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where b = inf{f(z) : ||x — Z|| = r} — f(Z). Note that b exists and b > 0 by continuity
of f. To show this inequality, let zo = r(x — Z)/(||x — Z||) + Z, so that z( lies on
the line formed by = and &, with ||zg — Z|| = r and ||x — x¢|| = ||z — Z|| — r. Thus
f(zo) — f(z) > b by the definition of b. Now let @ = r/||z — Z||. We see that

xo = azr + (1 — a)Z. By strict convexity of f,

f(xo) < af(z) + (1 —a)f(2)

Thus
Olle =211+ £2) < (flan) - s =T i)
< (of) + (1 oy f@) — s T i)
- /(@)
Since [J—{| > [[ol|— 1] fa]] — o0 implies | [z — oo, which implies f(x) — o0

by the above inequality and the facts that b > 0,7 > 0, f(Z) finite. Therefore, f is
coercive, and so is h.

Since h is coercive, we have h(z) — oo as ||z|| — oo. Therefore, if we pick an
arbitrary point x; € R", there exists a constant § > 0 such that h(z) > h(z;) for all
||z — x1]] > §. Since the domain ||z — x;|| < ¢ is compact and h(x) is strictly convex
on it, h(z) has a unique minimizer in ||z —z|| < §, which we denote as x*. (A strictly
convex real valued function defined on a compact domain has a unique minimum on
its domain.) This z* is also the global minimizer since h(x) > h(x;) > h(z*) on

||z — x1]| > 0.
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Proof of Proposition 4.2.1: Based on results in Lemma B.0.1, we let f to be —I(6)
and g to be A ijl s(0;)||bj||2 , therefore our objective function in (4.9) is the sum of
f and g, where 0 = {ag, v, bj,j = 1,..., J}, and 1(0) = >, yimi — log(1 + exp(n;))
with n; = ag + 2l a+ 37, S iy Cisibik.

Firstly, we show that —[(f) is strictly convex. It is sufficient to show that its

Hessian is positive definite. Since the Hessian takes the form
Vs(—1(0)) = X" DX

where D = diag{exp(n;)/(1 + exp(n;))*,i = 1,...,n}. It is positive definite since X
is of rank m (full rank). Secondly, since the maximum likelihood estimator exists,
—1(#) has an unique minimizer. The existence of maximum likelihood estimator for
logistic regression requires some conditions for the design matrix X. Basically, the n
rows of X can not be completely separated or quasi-completely separated in R™. See
[1] for details. In practice, as long as we can find a numerical solution for the MLE
at A = 0, we would believe that the maximum likelihood estimator exists. Finally, let
g(b) = >\ij1 s(6;)]1bj]l2, b7 = (bF,...,b%). Tt is easy to see that g(b) is convex by

the triangle inequality. Therefore by Lemma B.0.1, @(#) has a unique minimizer 6*.



Appendix C

Verification for Convergence of the

MCMC Algorithm 1 in Chapter 5.

C.1 The Verification of Algorithm 1

Based Equation (5.8),(5.10) and (5.11) in Section 5.2, Algorithm 1 can be simplified

as follows:
Step 0. Set initial values for b;’s, a, T and o7.
Step 1. Zj|la, b, Y, ~TN,l=1,..., L.
Step 2. o2|T, 2, Y, l=1,..., L.
Step 3. 7|02, Z;, Y, l=1,..., L.

Step 4. alo?, 7, Z ~ N(fta, Va)-
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Step 5. bo|a, 02,7, Z ~ N(po, Vo).

Step 6. by|by, v, 02,7, Z; ~ N(p, V).

Note that Step 2 and 3 are two Metropolis-Hastings steps within the larger Gibbs
steps. Step 4-6 are simple Gibbs steps. Let Z = (Zy,...,7.), Y = (Y1,...,Y1)
and b = (by,...,br). We firstly combine step 2 and 3 by letting F = (07, 7). We can
represent the transition kernel from Step 2—3 as P(E, A) with (conditional) transition
density f(E|E,Z,Y) = py(7|7,62, Z,Y)pi (62|02, 7, Z,Y). Therefore, f(E|Z,Y) =
[ f(E|\E,Z,Y)f(E|Z,Y)dE in the bigger Gibbs steps in (C.1). Later on we will
verify that P(E, A) is invariant with respect to the conditional measure f(FE|Z,Y).

First of all, we need to check that the transition kernel formed by the whole
MCMC steps is invariant. Here we denote the domain of parameter x as D(x). Then

/ / / / / flbo, &, E,Z,Y) f(bolé, E, Z,Y) f(&|E, Z,Y) f(E|Z,Y)
D(b)D(bo)D(a)D(E)D(Z) (C.1)

F(Z|b, by, o, W, Y ) f (b, bo, ., W, Z|Y) dZ dW dex dby db

/ / / / Flbo, &, B, Z.Y)f(bold, B, 2,Y) f(&|B, Z,Y) f(E|Z,Y)

(YD (bo)D()D(E
F(Z|b, by, o, W, Y) £ (b, b, e, W|Y) dW dev dby db

(Since / f(ba b0,0é,VV,Z|Y) dz = f(ba bo,Oé,W‘Y).)
D(Z)

////fb’bm E.ZY)f(bola, E, Z,Y)f(G|E,Z,Y)f(E|Z,Y)

(b)D(bo)D(e)D

- f(Z,b,by, a0, W|Y) dW dev dby db
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_ / / / Flbo, 6, B, 2.V f(bo]d B, 2.Y) (6l B, 2.Y) f(E|Z,Y)

D(b)D(bo)D(c)

- f(Z,b,by, a|Y) dov dbg db

(Since [ £(Z.0.b0.0, WIY) dW = F(Z.bb.alY).)

D(E)

=f(b|by, &, E, Z,Y) f(bola, E, Z,Y)f(&|E, Z,Y)f(E|Z,Y)

: / / f(Z,b,bo,alY) da dby db

This shows that the transition distribution formed by the larger Gibbs steps from
step 1-6 is invariant.

Secondly, we look at step 2 and 3 in detail. we need to show that the transition
density f(E|E, Z,Y) = py(7|1,62, Z,Y )p1 (62|02, 7, Z,Y) is invariant with respect to
the conditional distribution f(F|Z,Y’). For simplicity, we remove the Z,Y from the
transitional densities since all of them(within steps 2 — 3) are conditional on Z,Y.
Let q1(62|0?) be the proposal density for step 2, with the corresponding acceptance

rate

@ (otl7) |

~21 2 1 T
o1(oslos. 7) = min ~
1Gploy, ™) =mind 05 N G 02)

Therefore the transition density for step 2 is

p1(53103,7) = a1(Gpl0y ) (5307, T) L 52402y
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Then the Metropolis-Hastings routine gives us the following so called reversibility
condition:

(03 |7)p1(63 10y, 7) = m (63" |T)p1 (0415, 7). (C2)

Similarly, we let the proposal density for step 3 to be ¢o(7|7). The associated accep-

tance rate is

o (7|7, 67) = min{7T i
T
Hence the transition density for step 3 is
p2(7|7,67) = qo(F|7) (7|7, 673) L7 20y
Again, Metropolis-Hastings routine gives us the following reversibility condition:
(763 )p2(7|7, 53) = m(Fly)p2(77. 7). (C.4)

The proofs of Equation (C.2) and (C.4) are general for Metropolis-Hastings and can

be done by following the theorem in the Section C.2.
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Based on the above setup, the invariant transition distribution for step 2 and 3

can thus been shown as follows:
/ F(B|E)=(E) dE
D(E)

_ / / pa(F 17, 62)pr (32|02, ) (02| r)n(r) do? dr
D(1)D(c})
_ / w(7)pall7,52) / w(o2|7)p (32102, 7) do? | dr

D(r) | D(0})

I
—

(7)o (T|T, 65) / W(&?\T)pl(ag\&gm) dag dr (by Equation (C.2))

D(r) | D(o})

— [ wrailr. (3 )i

_ / 7(38)pa (7|7, 62)m (7|52 dr

D(r)
= m(5;)7(7]5;)
= 7(64,7)
= 7(E)

This proved that the Metropolis-Hastings Step in Step 2—3 has the right invariant
density.
In addition to check invariance, we also need to check irreducibility and aperiodic-

ity.(Note that irreducibility and existence of invariant distribution implies recurrency,
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and thus implies positive recurrency when 7 has finite total mass([73],page 1712).)
Since the algorithm has component-wise transition, it suffices to check that each
transition kernel (in each step) is irreducible and aperiodic. The irreducibility for
transitions of Z, 02, a, by and b is straight-forward since the transitions are fully sup-
ported on their convex domains. For 7, it lies in a domain of finite number of points,
for each pair of 7 and 7/, there is a n such that P"(7’|7) > 0. A simple strategy is let
7 firstly reduce to a vector of all 0’s in 777 steps, and let it increase to 7/ in (7/)7r
steps, then n = 777 + (/)T 7, and the transition probability is positive. Aperiodicity
is trivial to check. Since we can not find a d-cycle for the transition kernel hence it
is aperiodic.

To sum up, we have shown that the transition kernel formed by algorithm 1 has
invariant distribution 7(-) and is irreducible and aperiodic, hence by Theorem 1 of
Tierney([73]), it converges (in total variation) to a unique distribution 7 (-), which is

our posterior density.

C.2 Reversible Condition of Metropolis-Hastings

Assume that 7 has a density with respect to p and let @@ be a transition kernel of the

form
Q(x,dy) = q(z,y)u(dy).

Let ET = {z : w(z) > 0} and assume that Q(z, ET) = 1 for « ¢ E*. Also assume

that 7 is not concentrated on a single point. For a given X,, = x, we propose a



168

candidate value Y = y for the next point X, ,; from the distribution Q(z,-), and

accept it with probability

_ i "Wy, 7)
e y) = min{ ey

Otherwise, the candidate is rejected and the chain remains at X, ., = z.
If we define the off-diagonal density of a Metropolis kernel as
p(z,y) = q(@,y)a(z,y)Lizry),

and set r(z) = 1 — [ p(x,y)dy, then the Metropolis kernel P can be written as

P(x,dy) = p(z,y)pu(dy) + r(x)d.(dy), (C.5)

where §,, denote point mass at x. The value r(z) is the probability that the algorithm
remains at x.

Proposition For the Metropolis kernel defined above, we have

m(z)p(z,y) = 7(y)p(y, z), (C.6)

which 1s called reversibility condition.
proof. If z = y, then p(x,y) = 0, both sides equal 0. If z # y and 7(y)q(y,z) >
m(z)q(x,y), we have a(x,y) = 1. Therefore the left hand side(LHS) of Equation C.6
1s

LHS = 7(z)p(z,y) = 7(2)q(x, y)a(r,y) = 7(x)q(z,y).

The right hand side(RHS) of Equation C.6 is

RHS = 7(y)p(y, ) = n(y)q(y, v)a(y, z) = 7(y)q(y, :v)ﬂ— = m()q(v,y).
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Therefore LHS=RHS, the equality holds. For the case of 7(y)q(y,z) < m(x)q(x,y),

we can similarly show that the equality holds.



Appendix D

Some Details on EMC Algorithms

Here we give a more detailed introduction of EMC algorithm based on the work of
Liang and Wong [39], Liu [40] and Goswami and Liu [24]. The basic goal of EMC
algorithm is to generate Markov Chain samples from a target distribution m(z), which
can be a posterior distribution, or a conditional posterior distribution. In Liang and
Wong [39], Liu [40] and Goswami and Liu [24], they focus on sampling from a target

distribution with density function

f(z) oc exp{—H (z)/t}, (D.1)
where H(x) is called an energy function , which is equivalent to —logn(x) in our

Bayesian setup. The target function (D.1) is then a transformed version of 7(x) since

oxp{H (x)/t} = exp{—(=logn(x))/t} = m(x)"".
The t is called a temperature, which has the effect of making the target density more
flat or more spiky, as shown in Figure D.1. Liang and Wong [39] assume that there
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Figure D.1:  The plot of 7(x)'/* for a two-mode mixture normal distribution. The
density w(z) = 1/2¢(x;0,1.5%) + 1/2¢(x;10,0.5%), where ¢(x;p,0?) is the normal
density with mean p and variance o?.

are multiple t’s, denoted as t;,7 = 1,..., N, and ¢;’s are ordered from high to low.
The set {t1,...,tx} is called a temperature ladder. Assume that € R? and here
we assume each component of z is either 1 or 0. EMC algorithm first expands the

sample space from R? to RV by defining a new target density

N
7(x) o HW(in)l/ti,
i=1
where x = (x1,...,2y) is called a population of samples. The Markov Chain samples
is obtained based on m(x) with 3 types of operation: mutation, crossover and ex-
change. We summarize the details of the EMC algorithm stated in Liang and Wong

[39] and Liu [40].

An EMC algorithm

Step 0. Set the temperature ladder {t1,...,tx}, the initial values x = (x1,...,2y)
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and the mutation rate g,,.

Step 1. With probability ¢,,, run mutation and with probability 1 —g,,, run cross over.

(a)

Mutation. Randomly select xy, from (xy, ..., x,...,2y). Propose ) by
reversing some randomly selected bits of z;(Note: it is called 1-point/2-

points mutation based on the number of bits selected for switch). Denote

x' = (z1,...,2},...,2N), the new X' is accepted with min(1,r,,), with
logr,, = log T()T(x[x)\ _ [log(x}) — logm(ws)] T(x[x')
(%) T (x'|x) 12 T(x'|x)

Here T'(x|x’) denotes the transition probability of the proposal. Note that
using 1-point or 2-point mutation will both result in symmetric transition

probability ([39],Page 322).

Crossover. First, randomly select a pair (z;, z;), according to probabil-

ity
r() 4 ()
Zj'vzl m(x;)'/t

This can be done by firstly selecting x; with probability

(i, 25)|x) = ) Ti L.

(a:,\x —7T 1/t/Z 1/t

then choosing z; independent of x;, but with the same sampling proba-
bility. If ; = 2, we discard them and repeat sampling until we obtain
a distinct pair. ([40], Page 231). Here t is fixed (may not be the same

with items in the temperature ladder). This selecting procedure is called
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“roulette wheel” selection ([39], Page 319). After the pair (z;, ;) is cho-
sen, randomly select a location k as a crossover point, and swap z; with z;
starting to the right of the crossover point([39],Page 320). For example,
if we denote z; = (a1, ...,ax,...aq), and denote z; = (by,..., by, ..., ba).

Then after crossover at location k, we get
/
.Z'i = (al, NN bk+1, e bd),
/
{L‘j = (bl, c. ,bk,ak+1, c. ,ad).

Denote the population of sample after crossover to be

X = (x1,. ., 2.2, TN,

y Lo

the Metropolis ratio can be computed by

m(xX)T(x[x)
logr. = log ol XIX)
T R RT )
_ log 7(x}) — log m(;) N log 7(2}) — log 7 (x;) 4 log T (x|x)
ti tj T(X/|X)

where T'(x'|x) = P{(x;, z;)|x}P{(2}, 2)|(x;,z;)}. Note that according

177

to the selection rule, we have P{(z}, z})|(7;, 7;)} = P{(zi, z;)|(x}, 2)},

therefore the ratio of transition probabilities is reduced to the ratio of

selection probabilities, i.e.,
T(xlx) _ P{(xjz))x}
T(x'x) P{(wi, z;)|x}
(@) + m (@) S ()
m(@) 0+ m (@) 4 Dy () () ()

The new x’ is accepted with probability min(1,r.).
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Step 2. Selecting a pair (z;,z;) from the neighboring chains, i.e., |i — j| = 1. Let

x; = x; and 7} = x;, and compute the Metropolis ratio

m(x) T (x[x')

1 1 T !
log . = log - = [log m(z;) — log m(x;)](— — —) + log (x|x')

(x)T'(x'[x) ti b T(x'|x)
Note that the transition probability here is symmetric, since if we let p(x;) be
the probability of selecting z;, and let w(z;|z;) be the probability that z; is

chosen to be exchanged with z;, then
T(x'[x) = plai)w(z;|:) + p(e;)w(wiz)).
Therefore T'(x'|x) = T(x|x').

Note that in the EMC algorithm, each step can be run multiple times. For exam-
ple, in the mutation step, Liang and Wong’s algorithm ([39], Page 324) let each x} to
be updated independently using the mutation operation, and let the crossover opera-
tion repeat for [N/5] (the integer part of N/5) times, and let the exchange operation
repeat N times. Goswami and Liu’s algorithm ([24], Page 25), however, performs
mutation updates M times for each xy, and performs crossover updates [N /2] times,

and exchange updates N times.
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