
Supplementary Materials for “A Unified
Analysis of Structured Sonar-terrain Data
using Bayesian Functional Mixed Models”

Hongxiao Zhu

Department of Statistics, Virginia Tech, Blacksburg, VA 24061
Philip Caspers

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061
Jeffrey S. Morris

The University of Texas M.D. Anderson Cancer Center,Houston, TX 77230
Xiaowei Wu

Department of Statistics, Virginia Tech, Blacksburg, VA 24061
and

Rolf Müller

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

December 14, 2016

1 More Details of the Sonar-terrain Experiment

We collected echoes using a dual frequency bistatic sonar head. A schematic illustration

of the device is provided in Figure 1. The sonar head consists of two transducers: one

Figure 1: The setup of the sonar head in the sonar-terrain experiment.
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transmitter (denoted as T) used to ensonify the environment and one receiver (denoted as

R) used to receive echoes. The receiver consists of a small, omnidirectional microphone

mounted at the throat of a conical horn (Fletcher, 1992). The conical horn was used to

narrow the directionality and provide amplification along the line of sight. The receiver

and transmitter were collocated and mounted on a portable stand so that the height of

the sonar head was approximately 0.5 meter above the ground, and the look angle was

set so that the centerline (the line that is perpendicular to the receiver cone mouth and

connects the receiver with the substrate) was one meter long. The sonar head generates

an acoustic output using two commercially available piezo electric emission elements at

resonant frequencies of 25 and 40 khz respectively.

Three terrain substrates were considered: grass, rainforest, and sand. Example patches

are demonstrated in Figure 1. The rainforest substrate is a simulated tropical rainforest

floor composed of randomly scattered fallen branches, damp loose dirt, and leaves. Echo

footprints of grass and rainforest were taken outdoors, while the sand footprints were

measured at an indoor area with a few inches of sand spread over a concrete floor.

2 MCMC Algorithms for the FMM models

For notational convenience, based on the model (4) in the main text, we pool the two

design matrices for the fixed effects to form X̃ = [V,X], and pool corresponding coefficients

to form B̃∗
lk = [(G∗

lk)
T , B∗

lk]
T . Model (4) then becomes:

dlk = X̃B̃∗
lk + ZU∗

lk + E∗
lk, (1)

where X̃ is a design matrix of size N by A+ 1, and B̃∗
lk is a vector of length A + 1.

2.1 Algorithm for Gfmm

We design the following Markov Chain Monte Carlo algorithm for posterior sampling

in Gfmm:

[Step 0.] Initialize B̃∗, {qlk}, {slk}, {τalk} and set prior parameters. In particular, we use

Henderson’s mixed model equations to obtain estimates for B̃∗
lk and the variance compo-
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nents (Searle et al., 1992, page 275-286) for each (j, k), and use these estimates as initial

values.

[Step 1.] Update (γalk|dlk, B̃
∗
(−a)lk, {qlk}, {slk}) and (B̃∗

alk|γalk,dlk, B̃
∗
(−a)lk, {qlk}, {slk}) for

a = 1, . . . , A+ 1, where B̃∗
(−a)lk is the vector of B̃∗

lk with the ath component removed.

From model (1), we see that dlk|B̃∗
lk, {qlk}, {slk} ∼ N(X̃B̃∗

lk,Σlk), whereΣlk = qlkZZ
T+

slkIN . We first update γalk by calculating the conditional odds:

Conditional Odds =
f(γalk = 1|dlk, B̃

∗
(−a)lk,Σlk)

f(γalk = 0|dlk, B̃
∗
(−a)lk,Σlk)

=
f(dlk|γalk = 1, B̃∗

(−a)lk,Σlk)

f(dlk|γalk = 0, B̃∗
(−a)lk,Σlk)

· f(γalk = 1)

f(γalk = 0)

= Conditional Bayes Factor · Prior Odds.

Further derivations show that

Conditional Bayes Factor =
f(dlk|γalk = 1, B̃∗

(−a)lk,Σlk)

f(dlk|γalk = 0, B̃∗
(−a)lk,Σlk)

= (1 +
τalk
Valk

)−1/2 exp

{
1

2
ζ2alk(1 + Valk/τalk)

−1

}
,

where Valk = [(X̃(a)lk)
T (Σlk)

−1X̃(a)lk]
−1, X̃(a)lk is the ath column of matrix X̃lk, ζalk =

B̂∗
alk/

√
Valk, and B̂

∗
alk = ValkX̃

T
(a)lkΣ

−1
lk d̃lk for d̃lk = dlk −

∑A+1
l=1,l 6=a X̃(l)lkB̃

∗
llk.

Given {γalk}, we then update B̃∗
lk by (B̃

∗
alk|γalk = 0,dlk, B̃

∗
(−a)lk,Σlk) = δ0, and (B̃∗

alk|γalk =
1,dlk, B̃

∗
(−a)lk,Σlk) ∼ N(µ0

alk, V
0
alk), where µ

0
alk = B̂∗

alk/(1 + Valk/τalk) and V
0
alk = Valk/(1 + Valk/τalk).

[Step 2.] Update {qlk} and {slk} using Metropolis-Hastings. First propose new values of

qlk, slk using log transform, e.g., log(q̃lk) = log(qlk) + δǫ, for ǫ ∼ N(0, 1) and δ is the step

size. Second calculate the proposal ratio of the random walk proposal:

f(qlk|q̃lk)
f(q̃lk|qlk)

=
q̃lk
qlk
.

The new parameters {q̃lk, s̃lk} are accepted with probability min{olk, 1}, where

olk =
f(dlk|q̃lk, s̃lk, ·)π(q̃lk)π(s̃lk)f(qlk|q̃lk)f(slk|s̃lk)
f(dlk|qlk, slk, ·)π(qlk)π(slk)f(q̃lk|qlk)f(s̃lk|slk)

.

Here we have assumed qlk ∼ Inv-Gamma(alk, blk), therefore

log
π(q̃lk)

π(qlk)
= (alk + 1)(log(qlk)− log(q̃lk)) + blk(1/qlk − 1/q̃lk).
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Similar formula holds for the ratio π(s̃lk)/π(slk). The log likelihood ratio takes the form

log
f(dlk|q̃lk, s̃lk, ·)
f(dlk|qlk, slk, ·)

=
|Σ̃lk|−1/2 exp{−1/2(dlk − X̃B̃∗

lk
)T Σ̃

−1

lk (dlk − X̃B̃∗
lk)}

|Σlk|−1/2 exp{−1/2(dlk − X̃B̃∗
lk
)TΣ−1

lk (dlk − X̃B̃∗
lk
)}

where Σlk = qlkZZ
T + slkIN , and Σ̃lk = q̃lkZZ

T + s̃lkIN

[Step 3.] Update U∗
lk from (U∗

lk|·) ∼ N(µ
Ulk
,VUlk

), where VUlk
= ((slk)

−1ZTZ +

(IN(qlk)
−1)−1,µUlk

= VUlk
ZT (slk)

−1(dlk − X̃B̃∗
lk). This step is optional.

Repeat Steps 1-3 until reaching a pre-specified maximum number of iterations.

2.2 Algorithm for Rfmm

We denote the scaling parameters θlk = {(λilk)i, (φmlk)m, (ψalk)a}, and denote ν2 =

{{(νElk)2}lk, {(νUlk)2}lk, {(νGaj)2}aj}. We design the following Markov Chain Monte Carlo

algorithm for posterior sampling in Rfmm:

[Step 0.] Initialize {B̃∗
lk}, {θlk}, ν2, and set the prior parameters (aE, bE), (aU , bU),(aG, bG),

and (aπ, bπ). In particular, we use Henderson’s mixed model equations to obtain MLE es-

timates for B̃∗
lk,U

∗
lk and the variance components (Searle et al., 1992, page 275-286) for

each (j, k), and use these estimates to generate initial values for {θlk}, ν2. We set prior

parameters (aE , bE), (aU , bU ),(aG, bG), and (aπ, bπ) by controlling the mean of the prior

distributions to be the initial values and the variances to be reasonably large.

[Step 1.] Update (γalk|dlk, B̃
∗
(−a)lk, θlk,ν

2) and (B̃∗
alk|γalk,dlk, B̃

∗
(−a)lk, θlk,ν

2) for a =

1, . . . , A+1, where B̃∗
(−a)lk is the vector of B̃

∗
lk with the ath component removed. For compu-

tation convenience, we firstly pre-multiply model (1) byΛ
−1/2
lk , whereΛlk = diag{λ1lk, . . . , λNlk}.

This transforms model (1) to:

d+
lk = X̃+

lkB̃
∗
lk + Z+

lkU
∗
lk + E+

lk,

where d+
lk = Λ

−1/2
lk dlk, X̃

+
lk = Λ

−1/2
lk X̃, Z+

lk = Λ
−1/2
lk Z and E+

lk = Λ
−1/2
lk E∗

lk. We see that

d+
lk|B̃∗

lk, θlk,ν
2 ∼ N(X̃+

lkB̃
∗
lk,Σ

+
lk), where Σ

+
lk = Z+

lkΦlk(Z
+
lk)

T + IN , and Φlk = diag{φmlk}m.
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We first update γalk by calculating the conditional odds:

Conditional Odds =
f(γalk = 1|d+

lk, B̃
∗
(−a)lk,Σ

+
lk(θlk),ν

2)

f(γalk = 0|d+
lk, B̃

∗
(−a)lk,Σ

+
lk(θlk),ν2)

=
f(d+

lk|γalk = 1, B̃∗
(−a)lk,Σ

+
lk(θlk),ν

2)

f(d+
lk|γalk = 0, B̃∗

(−a)lk,Σ
+
lk(θlk),ν2)

· f(γalk = 1)

f(γalk = 0)

= Conditional Bayes Factor · Prior Odds.

Further derivations show that

Conditional Bayes Factor =
f(d+

lk|γalk = 1, B̃∗
(−a)lk,Σ

+
lk(θlk),ν

2)

f(d+
lk|γalk = 0, B̃∗

(−a)lk,Σ
+
lk(θlk),ν2)

=(1 +
ψalk

Valk
)−1/2 exp

{
1

2
ζ2alk(1 + Valk/ψalk)

−1

}
,

where Valk = [(X̃+
(a)lk)

T (Σ+
lk)

−1X̃+
(a)lk]

−1, X̃+
(a)lk is the ath column of matrix X̃+

lk, ζalk =

B̂∗
alk/

√
Valk, and B̂

∗
alk = Valk(X̃

+
(a)lk)

T (Σ+
lk)

−1d̃+
lk for d̃+

lk = d+
lk −

∑A+1
l=1,l 6=a X̃

+
(l)lkB̃

∗
llk.

Given {γalk}, we then update B̃∗
lk by (B̃∗

alk|γalk = 0,d+
lk, B̃

∗
(−a)lk,Σ

+
lk(θlk),ν

2) = δ0, and

(B̃∗
alk|γalk = 1,d+

lk, B̃
∗
(−a)lk,Σ

+
lk(θlk),ν

2) ∼ N(µ0
alk, V

0
alk), where µ

0
alk = B̂∗

alk/(1 + Valk/ψalk)

and V 0
alk = Valk/(1 + Valk/ψalk).

[Step 2.] Update (U∗
lk|B̃∗

lk,d
+
lk,Z

+
lk, X̃

+
lk,ν

2) ∼ N(µu,V u), where

µu = {(Z+
lk)

TZ+
lk +Φ−1

lk }−1(Z+
lk)

T (d+
lk − X̃+

lkB̃
∗
lk)

V u = {(Z+
lk)

TZ+
lk +Φ−1

lk }−1.

[Step 3.] Update (θlk|B̃∗
lk,U

∗
lk,dlk,ν

2). In particular,

(λ−1
ilk |dilk, B̃

∗
lk,U

∗
lk, (ν

E
lk)

2) ∼ Inv-Gauss(

√
(νElk)

2

(dilk − X̃T
i B̃

∗
lk − ZT

i U
∗
lk)

2
, (νλlk)

2),

where X̃i is the ith row of X̃ and Zi is the ith row of Z. Similarly,

(φ−1
mlk|U∗

mlk, (ν
U
lk)

2) ∼ Inv-Gauss(

√
(νUlk)

2

(U∗
mlk)

2
, (νUlk)

2),

where U∗
mlk is themth component ofU∗

lk. To update {ψalk}, we have two cases. Conditional

on γalk = 1, (ψ−1
alk|B̃∗

alk, γalk = 1, (νGaj)
2) ∼ Inv-Gauss(

√
(νGaj)

2/(B̃∗
alk)

2, (νGaj)
2). Conditional
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on γalk = 0, we update ψalk from the prior: (ψalk|B̃∗
alk, (ν

G
aj)

2, γalk = 0) ∼ f(ψalk|(νGaj)2),
where f(ψalk|(νGaj)2) is the density of Exponential((νGaj)

2/2).

[Step 4.] Update parameters (ν2|{θlk}, {γalk}). In particular, (νElk)
2|(λilk)i ∼ Gamma(N+

aE , 1/2
∑

i λilk + bE), (νUlk)
2|(φmlk)m ∼ Gamma(M + aU , 1/2

∑
m φmlk + bU), where M

is the total number of random effects. Finally, we have (νGaj)
2|(ψalk)a ∼ Gamma(Kj +

aG, 1/2
∑

k ψalk + bG), where Kj is the number of wavelet coefficients in scale j.

[Step 5.] Update (πaj |{γalk}k) ∼ Beta(
∑

k γalk + aπ, Kj −
∑

k γalk + bπ).

Repeat Steps 1-5 until reaching a pre-specified maximum number of iterations.

3 Integrating Out Random Effects in the Predictive

Likelihood

The model selection and discriminant analysis both require calculating the posterior

predictive likelihood for data from a new footprint, i.e., computing f(Ds|Vs,Xs,Θ(g)) by

plugging in posterior samples of parameters (denoted by Θ(g), g is the index for posterior

samples). Since the random effect for a new footprint cannot be estimated during the

training procedure, we need to integrate out the random effect U∗
lk from model (1) when

computing the posterior predictive likelihood. We now discuss details of this integration.

We can write model (1) for w echo envelopes from a new footprint as

ds
lk = X̃sB̃∗

lk + uslk1w + Es
lk, (2)

where ds
lk, 1w and Es

lk are vectors of length w, and uslk is the unknown random effect for

the new footprint.

In the Gfmm case, both uslk and Es
lk are Gaussian, i.e., uslk ∼ N(0, qlk), E

s
lk ∼ N(0, slkIw).

Therefore the likelihood for ds
lk is again multivariate normal, i.e., ds

lk ∼ N(X̃B̃∗
lk,Σ

s
lk),

where Σs
lk = qlkJ + slkIw. Here J is a w by w matrix of ones, and Iw is a w dimensional

identity matrix.

In the Rfmm case, since both uslk and components in Es
lk follow scaled mixture of

normal distributions (in particular, DE distributions), the analytical solution for the inte-

grated predictive likelihood is not easy to obtain. We therefore approximate the predictive
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likelihood of ds
lk using the trapezoidal rule. We found that the trapezoidal rule is more

accurate and numerically efficient than Monte Carlo approximation; the latter requires a

lot of (more than 1000) Monte Carlo samples. In particular, since all components of Es
lk

are independent DE(0, 1/νElk), we have

f(ds
lk|X̃s, B̃∗

lk,Θlk) =

∫
f(ds

lk|X̃s, B̃∗
lk, u

s
lk, ν

E
lk)f(u

s
lk|νUlk)duslk. (3)

Here f(ds
lk|X̃s, B̃∗

lk, u
s
lk, ν

E
lk) =

∏w
i=1DE(d

s
ilk − X̃s

i B̃
∗
lk − uslk, 1/ν

E
lk), where X̃s

i is the ith row

of the design matrix X̃, ds
lk = (ds1lk, . . . , d

s
wlk)

T , and Θlk contains all parameters except

uslk. The integration in (3) is then approximated by the trapezoidal rule. In particular, we

first partition the range of uslk into a dense grid, and then evaluate f(ds
lk|X̃s, B̃∗

lk, u
s
lk, ν

E
lk)

at each grid point. The integration in (3) can finally be approximated numerically using

the trapezoidal rule. In this calculation, the range of uslk is determined using the posterior

samples of uslk in the training procedure.

4 More Results in the Sensitivity Analysis

In this section, we display additional results in the sensitivity analysis. In Figure 2,

we plot the estimates of the three terrain mean effects under the five different setups. In

Figures 3 – 5, we plot the estimates of the three pairwise contrast effects between terrains

under the five different setups, where the yellow color indicates significantly nonzero regions

detected by SimBaS. In these figures, |T | denotes the number of grid points, db4 and db10

denotes the wavelets basis Daubechies 4 and Daubechies 10 respectively.

From Figure 2 - 5, we observe similar patterns to the channel contrast effect shown in

the main text. In particular, the estimates are similar across cases (1) - (4). The estimates

for case (5) show evidently more fluctuations on both the mean and the 95% simultaneous

credible band. The differences between the flagged regions mostly appear in places where

the SimBaS is close to 0.05, which are weakly significant regions.

In Figure 6 - 8, we display the wavelet basis functions corresponding to the original

analysis and the sensitivity analyses in cases (4) - (5). In these figures, l = 0 indicates

the scaling function (father wavelets), and l > 1 indicates different resolution levels of the

(mother) wavelet functions. From these plots, we see that higher order of the Daubechies
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Figure 2: The estimated terrain mean effects in the five sensitivity analyses.
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Figure 3: The estimated contrast effect grass - rainforest and the flagged nonzero regions

(in yellow color) in the five sensitivity analyses.
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Figure 4: The estimated contrast effect grass - sand and the flagged nonzero regions (in

yellow color) in the five sensitivity analyses.
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Figure 5: The estimated contrast effect rainforest - sand and the flagged nonzero regions

(in yellow color) in the five sensitivity analyses.
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wavelets (e.g., db10) demonstrates wider supports in lower resolution levels (e.g., levels l = 0

to l = 3) as well as higher degree of smoothness and fluctuations. Furthermore, in the low

wavelet level setup (e.g., number of levels = 5 in case 5), almost all basis functions have

narrow supports. This provides a sensible interpretation to the more wiggling estimation

results seen in case (5).
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Figure 6: Basis functions in the original analysis, where we set wavelet=‘db4’, number of

levels=9.
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Figure 7: Basis functions in sensitivity analysis case (4), where wavelet=‘db10’, number of

levels=9.
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