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1. MCMC ALGORITHM

1.1 Details of MCMC Algorithm

We perform a Markov Chain Monte Carlo algorithm to draw samples from the pos-

terior of the wavelet-space model parameters, to which the IDWT can be applied

to obtain estimates of the corresponding parameters in the data-space model. The

following are the details of the MCMC.

Step 0.

Step 1.

Step 2.

Initialize {vf }, {v5, }, {v/.} and {Xiji}, {@ejn }, {¥ajn} based on automatic MLE

estimation and set up prior parameters.

For each j, k, rescale the (j,k)th column of model (3) in the paper by premul-
tipling by Aj_kl/2 = diag{\;jx }7_, to obtain

d}, = X bi + Zhuj, + ey

where dj, = Ajkl/zd]k, X5 = A 1/2X and Z, = A]-_kl/QZ, and Ej, =
A;kl/ Qe}‘k are weighted versions of the data and design matrices for wavelet co-
efficient (7, k). Performance of this rescaling up front simplifies and speeds cal-
culations in the later steps. We can see that dji[bj,, 37, ~ N(Xj b 37,
with 2}2 = Z;FkCI)jk(Z;“k) + 1L, where ®,=diag(¢pjr )b

For each a, j, k, update By, from f(Bj;.|B{, s Ajk: Pjis Yajis dji), where
ik = {\ijr iy, D = {Pvjtiy, and dji = {d;;,}1~,. This distribution is a
mixture of a point mass at zero and a Gaussian distribution, with the Gaussian
probability given by agu = Pri{vas = 1B, Ajks Djis Yajis Taj, dji} =
Pr{vax = 1]djk, Bl ik Jk, Yajk, Taj }, Which can be obtained from the con-
ditional odds ratio:

Pr{fya]k dek? >(k a)jk’ ;;g>¢ajk77aj}

” = Conditional Bayes FactorxPrior Odds.
Pr{'yagk: O|d3k7 B —a)jk’ ]k‘ Q/Ja]kaﬂa]}

The prior odds is given by m,;/(1—m,;), and the conditional Bayes factor is (1+
Dagie/ Vaji) % exp{ ¢ (14 Vaj/aje) 1 /2}, with Vg = [{X 5, 3T (55 7 X5,



Cajk: = B;jk/\/ Vajk'a and Bé;k = V;ljk{X:jk}T(E;;Qil{d;—k - X?r_a)jkBik—a)jk}-

X,k represents the a™ column of X, and X . is Xj; with the a™ col-

umn removed. Drawing v, ~ Bernoulli(o;i), if Y4, = 0 we set By =

Otherwise, if v, = 1, we draw Bj
By (14 Vajie/tha) ™ and Vige = Vaju(1+ Vi /thay) "

from N(’LLB;jk7VB;jk)7 where 'U’Bij =

Take note of the form of szk, which is involved in yug-  , the conditional mean
when 7, = 1. We see from the X;;C (involving \;;x) that observations with
outlying residuals are down-weighted. From the expression of E;“k (involving
®ujk), We see that observations linked to outlying random effect units are also
down-weighted, since the b with large ¢y;, have larger contributions to the
variance ij, and thus are down-weighted by the term (E;rk)*l in B;]k
Also, note that this update step was done while integrating out the random

effects, which we have found leads to an improved sampler.

Step 3. Update uj, from f(uj,|bjy, Ajk, @4, djx), which is given by N(uu;k,VU;k),
where 1. = {(Z})"Z5,+23, Y 1 (Z5,)" (d),— X, Bjy) and Vo, = {(Z},)"Z,+
<I>j_k1 ~1 with ®;, = diag{;x }1",. Note from the conditional mean Mo, that
the \;;, implicit in Zﬁc act as weights on the observations, down-weighting
the influence of outliers, and ¢;;, act as prior variances leading to nonlinear
shrinkage of uj,, with wavelet coefficients with larger random effect magni-

tudes tending to have larger prior variances, and thus less shrinkage.

Step 4. Conditional on b7, uj

*. and the lasso parameters {v; }, {v5;},{v}}} , update

the scaling parameters {\;jx }i, {Pvjk}o and {gjx }o from their complete con-
ditional distributions. We credit Park & Casella (2008) with demonstrating
that the complete conditional of the inverse of a scaling parameter in the
Bayesian lasso model has a closed form expression as an inverse Gaussian
distribution. Based on those results, similar calculations in our setting re-

veal that the complete conditional distribution of the inverse of all scaling



Step 5.

Step 6.

parameters in the R-FMM are also inverse Gaussians, specified as follows.

zjk|dl]k’ jk> ;k’ VjEI; ~ II]V Gauss{\/ 2/ ijk — Xszj;k - Z?u;fk)27 (Vﬁ)2}7
Goinl Uy v~ Tnv-Gauss{y/ (v)?/(Up;)2, (vVii,)*},
( ajk|Bajk7 jk?fya]k 1) ~ Inv- Gauss{ ( ) /(BZ]I@) ( ﬁﬂ)2}7

(¢ajk‘Bajk7 ]k77ajk = 0) ~ EXp(( ) /2>

Here X7 and ZI are the i rows of the design matrices X and Z, respectively.
Note that in the final row above, when 7,5, = 0, the Gibbs update step for

Y4k amounts to sampling from the mixing distribution, since in that state of

e

the model the distribution is independent of the data conditional on v,;.

Update the lasso parameters {v;}, {v§,}, {vj;} from their complete condi-

tional distributions. Their squared values are conjugate gammas, i.e., (v/)*[{Aijr }i ~
Gamnma(n-+a®, S0 A/ 24+5), (W) {nsehs ~ Garmma(m-+a?, S e/ 2+
V), and()?{taji}a ~ Gamma(K; + a?, 337 ¢oj/2 + bP), where K is

the number of wavelet coefficients at resolution level j.

For each a, j, update m,;|{Vaji }x ~ Beta(> , Yajr + a™, Kj — > Yaji + 07).

Repeat Steps 1-6 until reaching a pre-specified maximum number of iterations.

1.2 Some Derivations for the MCMC Algorithm

(1) The conditional Bayes factor in Step 2.

From Step 2, it is easy to see that the conditional odds can be written as:

J(aje = dek) B{ —a)jk? E‘;}g(ejk>7 V2) f(d;_khajk =1, B?,a)jka E;_k(gjk)a V2) f (Yajr

= Conditional Bayes Factor x Prior Odds,

in which, f(djkhajk = 07B?—a)jk7z;_k(0jk)7lj2) o |§]jk|*1/2 exp{—%(aﬁ) (Ejk) 1d )

where d, = dj;, — X[’

a)jka_a) jx- In the numerator of the conditional Bayes

= 1)
f(’ya]k; O|djk7 *—a)jk’ Ej_k(ejk)7 VQ) f(dj_k|7ajk - 0, B?_a)jkﬂ Ej_k(ejk): V2) f(q/ajk - O)



factor,

]k|7a]k 1,B_ )]k72+k(0jk)a’/2)
[ @b B0 (B = 1B
o [V e {7 (2507 - ()X X, (=h) /]
where K = (X{, )7 (35) "X i + Caje = Vagr + Yoo and X[, s the

ath column of X;rk Based on this, the conditional Bayes factor can be further

simplified to
(14 aji/Vage) " exp {C k(1 + Vajie/Vaje) /2 -

The Inverse-Gaussian distributions for updating scaling parameters
in Step 4.

The standard inverse Gaussian distribution (with mean g, variance p?/s) has
density f(z|u,s) = [s/(27rx3)]1/2 exp{—s(z — u)?/(2p*z)}. Consider the scaling
parameter \;jj:

FNijildijn, B, U, (V)?) o< f(digil B, Ul Migie) f gl (v3)?)

—(dijr, — XIBY, — Z7U% )% — —22—
[2( Jk i gk % jk) ] 2/(VJE]€)2},

where X! denote the ith row of X, and Z! denote the ith row of Z. Using

_ 1
OC()\U]{) 1/2 exp{—)\
ijk

transformations from Ay to Ay, we find that (A |dijr, B, Usy, (vf)?) is dis-

vEy2 - .. .
tributed as Inv-Gauss (\/ T XT(Jajf)_zTU* 5 (vj)?). Similar derivation gives

the conditional inverse Gaussian distributions for gzﬁb . and wa]k

In Step 4, the updating of ¢,;, conditional on v,;;, = 0 needs extra
attention.

According to our prior assumption,

FWajkl By (Vi1)? Yajk = 0) o f(BijglVae = 0, Caji) f (Cajil (V17)?) = S0(Bij)-f (ajnl (Vi3)?).

Therefore we have f(¢qrBjj = 0, (V)% Yaje = 0) = f(tajil(¥]}.)?), which is

Exp((vf})?/2). Since 4y, is a prior parameter for the case v, = 1, the above

5



step is only for the purpose of forming a strict Gibbs sampler. Here we have
assumed that the prior for v, is independent of 74, i.e. f(¢ajk|(1/ﬁ)2, Vajk =
1) = f(ael(V3)% Yaje = 0) = f(Yasil(¥3)?). Similar issues are discussed by
Carlin & Chib (1995); they call f(Vu;| Bi, (2)% Yajr = 0) the “pseudo-prior.”

Our simulations and real data application show acceptable mixing for {t;i}

and the related parameters.

2. INITIAL VALUES AND EMPIRICAL BAYES PARAMETERS

2.1 Initial Values for MCMC

In the MCMC algorithm, we compute initial values based Henderson’s mixed model

equations on pages 275-286 of Searle et al. (1992). In particular, we first obtain

maximum likelihood estimates (MLE) for the variance components, fixed effect and

random effects in model (3), assuming uncorrelated Gaussian distributions for uj, and

el ie., Var(u},) = 031, Var(el,) = (0),)°L,, Cov(uj, el) = 0. We then initialize

the lasso parameters by matching the mean of the exponential mixing distributions
0

with the estimated variance components 6%, (6%)* and the estimated variance of

B*

ojk- The initial values for the scaling parameters are then obtained by sampling

from the distributions specified in Step 4, conditional on other initial values.

2.2 Empirical Bayes Parameters for Gamma

The values of the Gamma hyper-parameters (a”,b¥), (a¥,bY), (a?, bP) are determined
by letting the mode of the Gamma distributions equal to the averaged initial esti-
mators of {(v;)?}, {(v5,)*}, {(v];)?} respectively while controlling the variance to be
large, such as 10°. The initial estimators of {(v];)*}, {(v5,)*}, {(v/;)?} are obtained
by match the mean (first moment) of the exponential prior with the MLE estimator
of the variance components, as described in@211 The Beta hyper-parameters for {m,;}
were chosen in a similar way by matching the mode of Beta to the averaged initial
estimates {m,;} while control the variance to be fairly large. The initial estimates

{ma;} were computed from the conditional odds in Step 2 while plugging in the initial



MLE estimates.

To guarantee the stability of the algorithm, some numerical constraints are added
when determining the initial values. Since the v values control the variance of the DE
distributions, which, if too large, will result in too small variance of DE, which is not
what we want to see in the prior (and likelihood). Therefore we add extra constraints
that all estimated v initial values are scaled by 10 (i.e. divided by 10) and they are all
bounded above by .1. This will guarantee that all initial values of v are small enough.
Accordingly the estimated initial values of (a,b) enables a Gamma prior with mode
less than .01, variance around 10%. Note that for a Gamma(a,b) distribution with the
mode exactly at .01 and variance exactly at 103, the corresponding (a,b) values will

be a = 1.0003, b = 0.0316, with 95% confidence interval (0, 94.8].

2.3 A Sensitivity Study

To numerically test whether the posterior estimates of our Robust FMM model are
sensitive to the pre-specified variance of Gamma(a, b), we re-run our real data analysis
at 4 different variances for initial values of (a, b), i.e., Var(v?) = (500, 1000, 5000, 10000).
Figure [ shows the estimated Bi(t) and its 95% credible intervals at each run. We
can not see any significant difference between these posterior estimates. Table [Il show
the integrated squared posterior mean of B,(t),a = 1,...,5 and Uy(t), b = 1,...,5.

No significant difference or pattern is found.

3.  FURTHER EXPLANATION OF BAYESIAN FDR

Once we apply the MCMC, we are left with posterior samples of the data-space model
parameters that we can use to perform Bayesian inference. One common task is to
find regions of T for which B, () or some function of the B,(t) is significantly nonzero.

Suppose we model the log, scale, and are interested in finding regions of T for
which there is at least a d-fold difference in the mean intensity. From the MCMC pro-
cedure, suppose we have GG posterior samples of the corresponding fixed effect function

B(t) = [B(t1), B(ty), ..., B(tr)] on the log, scale, denoted by {BW(t),g =1,...,G}.
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Figure 1: The posterior mean of By (t) under different initial setup.

Variance of Gamma

200 1000 | 5000 | 10000

Sy

1(t) | 266.20 | 266.35 | 266.72 | 266.14
By(t) | 259.44 | 259.60 | 260.00 | 259.46
Bs(t) | 260.39 | 260.09 | 259.97 | 260.37
By(t) | 267.69 | 267.72 | 267.86 | 267.81
Bs(t

(t 1.82 1.94 1.88 1.81
(t 1.62 1.51 1.46 1.55
(t 3.10 3.06 2.91 2.81
(
(

1.31 1.31 1.44 1.33

S

t

t 2.68 2.89 2.66 2.76

)
)
)
)
) | 18.98 | 18.96 | 18.62 | 18.57
)
)
)
)
)

&

Table 1: Integrated squared posterior mean of B,(t), a = 1,...,5 and Uy(t), b =

1,...,5 under difference choices of variance for Gamma(a, b) priors.



From these, we can estimate the point-wise posterior probabilities of at least J-fold
intensity changes at each spectral location as p(t;) = Pr{|B(t;)| > log,(d)|Data} ~
G, H{IBY ()] > logy(6)} for all #,1 = 1,...,T. Note that 1 — p(t;) can be
interpreted as a “local FDR” for detecting a d-fold expression difference at t;. Given
a desired global FDR bound a (0 < a < 1), we can determine a threshold ¢, at
which to flag the set of points with p(¢;) > ¢, as differentially expressed.

To obtain ¢,, we firstly sort {p(¢;),l = 1,...,T} in descending order to obtain
{pwy,l =1,....T}. Then ¢, = p(s), with s = max{l* : (I*)"! S {1 - po} < at.
The set of locations 1) = {t; : p(t;) > ¢} is the set of discoveries. The threshold ¢,
is a cut-point on the posterior probabilities that corresponds to an expected Bayesian
FDR of «, in the sense that on average > 100(1 — a))% locations of the set 1 should
have a true 0-fold difference. That is, if N(¢)) is the cardinality of the set 1, defined as
N(y) = 2L I(t; € v), then N(i)~! > tew PT{IB(t)| < log,(d)|Data} < . Morris,
et al. (2008) describe the analogous criterion in the continuous space, based on
Lebesgue measures.

Based on the set of discoveries 1, we can further compute the model-based es-
timates of the FDR, false negative rate (FNR), sensitivity (Sens) and specificity
(Spec) for detecting differentially expressed locations. Defining ¢ U’ = T, and
N(S) as the cardinality of set S, the FDR is estimated by N(¢)~' 37, - {1 —p(t,)},
the FNR by N(¢')~' 37, ., p(t:), the Sens by (I > ew P(t1), and Spec by
L1 —pt) ) > newil — p(t)}. We refer to these as “empirical” quantities,
since they are not based on a gold standard but are estimated based on the specified
model.

We can construct an ROC curve to summarize the overall strength of our results.
Instead of specifying o and computing the corresponding cutpoint ¢,, we vary the
threshold ¢ across the entire range of (0,1), compute Sens and Spec for each, and
plot Sens vs. 1-Spec to construct an ROC curve. Again, we refer to this as an
empirical ROC curve, since it is based on model-based estimates, not a knowledge of

the true curve. The area under the empirical ROC curve (AUC) can be computed



and can serve as a summary measure of the strength of detected differences for these
data. Alternatively, to focus on the most relevant part of the ROC curve with high
specificity, we can compute the p-percentile AUC (AUC-p, e.g. for p = 10) by finding
the area under the portion of the empirical ROC curve with (1 — Spec) < p% and
multiplying this area by 100/p.

The method described above can be sketched in a diagram in Figure 2l where the
solid decreasing line denotes the ordered p(t;), and on the x-axis, the left side of ¢,
is the p(t;) corresponding to the set of discoveries 1. The areas denoted by A, B, C,
D are the estimated proportions for true positives, false positives, false negatives and
true negatives, respectively. The threshold ¢, is indeed determined by constraining
B/(A+ B) < a, and the corresponding FNR is estimated by C/(C + D), Sens by
A/(A+C), Spec by D/(B + D).

The Bayesian FDR-based inference described above yields estimates of the statis-
tics FDR, FNR, Sens, Spec, AUC and AUC-p without knowing the true underlying
function B(t). We call such estimated statistics the “empirical” quantities. In simu-
lations, where we know the true function B(t), we can compute the true statistics by
computing the true false positives, false negatives, true positives and true negatives,
of which we also use A, B, C, D to denote the corresponding counts. The counts are
determined by fixing A+ B = N(¢)) and C + D = N(¢/), for the same 1 and 1’ sets
obtained when computing empirical statistics. Among the set of 1) and 1/, we can
find the number of positions within the curve that truly have J-fold differences using
the true function B(t). The resulting A, B,C, D counts are listed in Table 2l The
statistics are computed based on these counts using the same formula as was used
for those of Figure 2l We call the statistics computed from Table 2] when true B(t)

is known the “realized” quantities.

10
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I ndex of ordered probabilities

Figure 2: A diagram for Bayesian-FDR based inference.

Table 2: The true FDR inference when true B(t) is known

True |B(t;)| > ¢

Yes No Total
Yes A B N(%)

Pr{|B(t;)| > 6} > ¢
No C D N(y)

11



4. EXTRA SIMULATION RESULTS

4.1 Extra Results for the Main Simulation

In simulation study, we also plotted the posterior mean for one fixed effect function
By (t) with corresponding 95% point-wise credible interval for both methods and all
5 distributions from one simulation run (see Figure B]). From this plot, we see that as
the tails of the random effects and errors get heavier, the R-WFMM provides better
estimation and more adaptive regularization than the G-WFMM, in the sense that
the G-WFMM retains true spikes better while smoothing out more of the “spurious
wiggles”. This is most clear in regions with extreme outliers for which the MLE
deviates far from the truth. In these regions, the G-WFMM is strongly affected by
the outliers, with relatively poor estimation and wide credible intervals, while the
R-WFMM does a much better job, with posterior mean estimates close to the truth
and relatively small credible intervals.

Using the three summary measures (IMSE, IPVar, ITVar) described in the paper,
we computed the ratio of G-WFMM and R-WFMM as measures of relative efficiency.
For each measure, we then summarized the mean ratio across all 10 repetitions, and
across index a for B, (t) and across index b for Uy (t), along with the corresponding 90%
intervals. Results are presented in Figure @] with larger numbers indicating greater
efficiency for the R-WFMM. Note that for clearer display, the ratios in Figure Ml are

plotted after logs transforms but are labeled according to the original scale in y-axis.

To evaluate the relative inferential performance, we also computed posterior sam-
ples for the organ, cell line, and organ-by-cell line functional effects C;(t),i = 1,2, 3,
defined in Section 4 in the paper, for both the G-WFMM and R-WFMM. We then
computed posterior probabilities of 1.5-fold expression changes for all 3 functional
effects, and estimated the corresponding thresholds ¢y to declare significance based
on a global FDR of @ = 0.10, as described in Section [3] Based on these determina-
tions, we computed both the “realized” and “empirical” FDR, FNR, Sens, and Spec,
plus the AUC and AUCI10 for the realized and empirical ROC curves. The “realized”

12
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Figure 3: Adaptive estimation of By(t) for G-WFMM and R-WFMM in
stmulation. This plot presents posterior means (blue line) and 95% credible inter-
vals (grey bands) for G-WFMM (left) and R-WFMM (right) for all 5 tail distribu-
tional assumptions used in the simulation (rows), along with the true By(t) (pink)
and naive, unregularized estimates of B4(t) (green). This plot is for one of the 10
simulations. Similar plots for other parapgters for all simulation runs are available

as online supplementary material.
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simulate the random effects and residual errors in the wavelet space.
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statistics are computed based on the true B,(t), whereas the “empirical” quantities
are estimated from the model without knowledge of the true B,(t). Results are given
in Table B

Using the realized AUC as a summary measure of performance, we see that the
R-WFMM considerably outperformed the G-WFMM for all simulation settings with
heavier-than-normal tails, with the magnitude of the difference increasing with the
heaviness of the tails. This improvement is even more pronounced in the AUC-10,
which focuses on the region of the ROC curve with highest specificity, and can also
been seen in the individual FDR, FNR, Sens, and Spec statistics. These results were
mirrored in the estimated empirical statistics, which did not presume knowledge of
the true B,(t). Note that the G-WFMM yielded slightly higher AUC and AUC-10
than the R-WFMM in the Gaussian simulation. This indicates, as expected, that
some inferential price was paid for robust modeling when it was not needed, although
the magnitude of this trade-off was not large compared with the improvements seen
in setting of heavy-tailed distributions.

Extensive results from the 10 simulation runs are put into 10 folders, named by
runl through runl0, available online at (http://odin.mdacc.tmc.edu/~jmorris/papers.html).

Each folder contains the following files:

e Plots for fixed effects. For example, B1_SIMU10.pdf is the 5 x 2 plots of fixed ef-
fect By(t) obtained in simulation run 10. The 5 x 2 plots are like Figure 3 in the
main paper, with the columns indicating method (G-WFMM /R-WFMM) and

the rows indicating the distribution used for the simulation (Normal, DE,t3,to,t1 ).

e Plots for grand mean effects (Cy(t)), organ effects(Cy(¢)), cell line effects(Caq(?)),
and Organ-cell-line interaction(Cj(t)) effects. For example, C1_DE_SIMU10.pdf

is the 2 x 1 plots of organ effects for DE data in simulation run 10.

e Plots for random effects. For example, U13_t_1_SIMU10.pdf is the 2 x 1 plots

for random effect Uy3(t) for ¢; data in simulation run 10.

15
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Table 3: Simulations: Inferential results for G-WFMM and R-WFMM, including sensitivity, specificity, FDR, FNR, and area
under the ROC curve (AUC) and partial ROC curve (AUC10), all computed both assuming knowledge of the true quantities
B,(t) (realized) and computed from the model without assuming knowledge of the true quantities (empirical). Summaries

combine information across all fixed effect functions a =1,...,5

Realized Empirical

Tails Model AUC AUCI10 Sens Spec FDR FNR AUC AUC10 Sens Spec FDR FNR

Normal G 818 .346 288  .964 251 214 .816 377 245 984 .097 321
783 301 347 939 325 204 837 420 325 978 .097 300

DE G 813 323 316 953 288 209 .826 387 269 981 .097 333
R 845 402 433 945 257 181 867 474 385 976 .097 .268
t3 G .868 453 H07 938 248 162 .859 461 406 970 .098 293
R .893 506 602 927 .246 137 .899 530 514 .966 .097 234
to G 71 .269 271 948 343 221 798 338 232 981 .097 374
R 871 469 484 950 219 167 883 501 418 975 .097 252
t1 G 700 226 214 963 318 232 765 207 142 982 .098 502
R 881 715 .641 974 .099 120 845 621 D57 973 .097 A71




e Sample trace plots of model parameters. For example, Traceplot2_t_1_SIMU10.pdf

is the second trace plot (5 x 2) for ¢; data in simulation run 10.

4.2 Details for the Extra Simulation

It is of interest to consider performing simulations with heavy tailed distributions
directly in the data domain, such as Cauchy or other non-Gaussian processes which
may induce spurious artifacts. This study is aimed to show that with data generated
in time domain directly, similar results will be obtained as the result shown in the
paper, i.e., we would expect the proposed robust method giving improved estimation
than the Gaussian model.

We generate data in time domain as follows: Firstly two time domain “reference”
covariances Y, Y. are obtained from the reference data. These covariance are of
practical forms since they are obtained based on a real dataset. Secondly, the ran-
dom effects U,(t) and E;(t) are generated from multivariate t distributions with v
degree of freedom and scaling covariances ¥, Y. respectively. The design matrices
and fixed effects remain the same as those in the original simulations in the paper.
Figure [l shows the plots of the data generated with v = 1, and Figure [@ shows the
reference covariances and the resulting sample covariances. Note that for multivari-
ate t distribution, denoted as t(v, 1, 2), the mean is p, the covariance is v/(v — 2)3.
The true covariances do not exist when the degree of freedom v < 2. We applied
the G-WFMM method and R-WFMM method to this data. Table [ shows the re-
sulting IMSE for the fixed and random effects. Note that the IMSE is computed by
f(é(t) — 6o(t))?dt. From Table ] we see that using the proposed R-WFMM model,
the resulting IMSE for fixed and random effects are significantly smaller than that
using the G-WFMM model.
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Figure 5: The plot of data generated from multivariate ¢ distribution with degree of

freedom 1.

IMSE
Bu(t) | Ba(t) | Bs(t) | Balt) | Bo(t) | Un(t) | Un(t) | Us(t) | Ua(t)
G-WFMM | 1.21 1.14 0.86 1.02 |1 0.003 | 1.17 | 1.28 1.32 1.14

R-WFMM | 0.53 | 0.76 | 0.47 | 0.58 | 0.002 | 0.53 | 0.61 | 0.69 | 0.49

Table 4: IMSE for the G-WFMM and R-WFMM estimate for B,(t), a = 1,...,5 and

Up(t), b=1,...,5.
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Figure 6: The image plot of reference covariances and sample covariances. The top
two panels show the reference covariances for random effect and error that are used
to generate data; the bottom two panels show the respective sample covariances

estimated from the generated data.
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5. EXTRA REAL DATA APPLICATION RESULTS

5.1 More Results Using Bayesian FDR
Here we show more results for real data applications. Figure [1 zooms in to demon-
strate one of the regions flagged as significant by the R-WFMM but not the G-WFMM
[7450D, 7700D]. The top panel contains the empirical mean spectra and model-based
regularized posterior mean estimates for the A375P (solid line) and PC3MM2 (dot-
ted line) cell lines, respectively, the middle panel contains the posterior mean cell line
effect functions for the two methods, and the third panel contains the corresponding
posterior probability plots (1.5-fold).

In addition to the significant regions for Cell Line effect plotted in Figure 2 in the
paper, here we show the significant regions plots for Organ effect in Figure[§, and for

Organ-by-Cell Line interaction in Figure [

5.2 Results for Outlier Detection

To investigate possible outliers in the data, we computed the statistics \; for each
individual spectrum, ¢ = 1,...,32, and ¢, for each individual rat, b = 1,...,16,
and constructed box-plots of these quantities (shown in the top panels of Figure [I0I).
None of the individual curves or rats were flagged as outliers, defined as 1.5xIQR
above the median. To check whether the regions of certain curves were outliers, we
also computed the functional outlier statistics {\;(¢)} and {¢,(t)} for all spectra and
rats, respectively. For each t, we computed the point-wise box-plot statistics, i.e.
medians M) (t) and My(t) and IQRs given by IQR(t) and IQR,(t). We flagged
regions of individual spectra with \;(t) > M,(t) + 1.5/QR,(t) and individual rats
with ¢p(t) > My(t) + 1.5IQR4(t). For illustration, we summarize the results for one
spectrum (i = 21) with largest {\; .} and the one rat (b = 4) with largest {¢; },
marked by the triangle and square, respectively, in the top panel of Figure [[0. The
bottom panel contains M, (t) and My(t) in black, and the flagged regions of Ay (%)
and ¢4(t) in red, and the middle panel plots the corresponding raw spectra (red)
along with the others (black). From the left-hand panels, we see that spectrum 21
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has unusually high levels of protein expression for some proteins around 4000D, and
unusually low levels of expression for several peaks around 5000D and 10000D. From
the right-hand panels, we see that rat 4 has unusually low levels of some proteins
around 5000D, and unusually high levels for some proteins around 7000D. These
outlier functions are useful diagnostics to identify unusual curves or individuals for

further investigation.

6. THE GAMMA MIXTURE OF DE PRIOR
Assuming Y ~ N(0,\) and A ~ Exp(r?/2), we can integrate A out to get Double
Exponential distribution of Y: Y ~ DE(0,1/v). If we further have v* ~ Gamma(a, b),

we can further integrate v out to get the density of Y as

1) = St e { LD (1) m
where D, (-) is the parabolic cylinder function defined as D,(z) = e=*"/4/T'(—p) Iy exp{—zz—
2?/2}x P dz, p < 0 (Page 1028, 9.241, 2., Gradshteyn & Ryzhik, 2007). This
formula is initially shown by Griffin & Brown (2005) with slightly different nota-
tion. They call the distribution associated with () the Normal-Exponential-Gamma
(NEG) distribution. The NEG distribution is always proper as long as 0 < a,b < oc.
Here a controls the heaviness of the tails, and b controls the scale.

An equivalent formula of () is:

F) = || v explvlal = r2)a 2)

The above formula is obtained by directly integrating v out from the hierarchical set:

DE(0,1/v) and v* ~ Gammal(a, b).

7. THE EXPONENTIAL-GAMMA MIXING DISTRIBUTION

Upon the request of one referee, we’d like to compare the Exponential-Gamma mixing
distribution with the mixing distribution that leads to Cauchy. In the hierarchical

setup of scale mixture of normals with Exponential and Gamma priors, we try to
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collapse the Exponential and Gamma priors first by integrating VJ?,C, and compare
that with the mixing distribution that leads to Cauchy. We would like to see if the
integrated marginal distribution is of Cauchy type.

Consider mixing distributions with respect to normal kernel. We will evaluate
the heaviness of tails using the concept of regular variation. An introduction of
regular variation can be found in Andrade & O’Hagan (2006). Assuming y ~ N (0, ),

2

A ~ Exp(v?/2) and v? ~ Gammal(a,b), we can integrate v* out to get the mixing

distribution:
a A
= — 1 J— _(a—"_l)'
90 = 1+ 2) Q
Since this density function is regularly varying with order p = —(a + 1), while on

the other hand Inv-Gamma(1/2,1/2) is regularly varying with order p = —3/2, the
distribution (B has heavier (right) tail than Inv-Gamma(1/2,1/2) if a < 1/2. Since
normal mixture of Inv-Gamma(1/2,1/2) results in Cauchy, we therefore expect that
using mixing distribution (3)), the resulting distribution will have heavier tails than
Cauchy provided a < 1/2. In fact, since the resulting distribution has density (),

which, when % is large, can be approximated by

~ ¢ M —2a—1
fly) = (\/%) : (4)

The density in ([ is regularly varying with rate p = —2a — 1, while Cauchy density
is regularly vary with rate p = —2. Therefore as long as 0 < a < 1/2, distribution
(@) has heavier than Cauchy tails. This is consistent with the result when comparing

the tails of mixing distributions.

8. PROOF OF ROBUSTNESS AS ONE CURVE APPROACHES INFINITY
We now provide some preliminary results on the robustness properties of the models.
Although it is well known that in simple regression, using heavy tailed distributions
will result in robust estimates, to our knowledge, no formal definition has been made

for the robustness in functional data regression. We believe that both the definition
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and theoretical investigation deserve another intensive study. Results shown here are
only preliminarily and are built under the particular assumptions made in this paper.

Essentially, we’d like to show that under the hierarchical setup of our model,
the posterior estimates are (asymptotically) not influenced by outlying observations.
We approach this by showing that as one outlying observation goes to infinity, the
posterior distribution approaches to that depending only on the non-outlying data.
As the model is constructed through wavelet transform, we just need to show the
equivalent properties for wavelet coefficients.

Lemma 1. Consider a simple model d; = pp+¢;, v =1,...,n,n+ 1. The prior
distribution for u, w(u) is proper. The likelihood is assumed through the following
hierarchical setup: dilp ~ N(p,N;), \i ~ Exp{v?/2}, v* ~ Gamma(a,b), where
0<a,b<ooanda,b are known constants. Then the resulting likelithood distribution

for this model is is outlier-prone, which means that the posterior distribution
Prip<cldida,... dp1) — Prip<c|di,dy,....dn), as |dps| =00, (5)

for all ¢ and {dy,...,d,} and for all proper 7(p).

Remark: The terminology outlier prone is defined in O’Hagan (1979), which
essentially means that a data-generating distribution “have well-behaved and “thick”
tail, so that when the observation becomes large the information it carries is weak.”
The counterpart outlier resistance means that “a posterior distribution that necessar-
ily “increases” when an observation increases”. 1t was shown that normal distribution
is in the outlier resistant family, while t-distribution is outlier prone.

Proof: We will follow the results of O’Hagan (1979). Firstly, provided that the
likelihood f(-) is bounded, if the outlier proneness holds for some n, it holds for n=1.

Since the posterior distribution can be written as:

/ f(lj“|d17"'7dn7dn+1>d,u
p<c

s [ Lty

i=1

pn<c
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where f(d;|p) is the likelihood and G(pl|dy, . . ., d,,) is the posterior distribution based
on the first n observations. If (B holds for any proper prior 7(u), we can treat
the G(uldy,...,d,) as a “new” proper prior, corresponding to a single observation
dpy1. It thus holds for n = 1. Similar arguments can be found on Page 362 of
O’Hagan(1979).  Secondly, under the hierarchical setup, if we integrate out the
intermediate parameters \; and v, we find that the likelihood (residual) distribution

f(d — p) takes the following form:

a 2° 1 y2} ( lyl )
= — I'a+ =)exp = > D_o, 1 | — 6
St o { D (1 )
where D, (-) is the parabolic cylinder function defined as D,(z) = e=**/*/T'(—p) I exp{—zz—
2?/2}a P dz, p < 0 (Page 1028, 9.241, 2., Gradshteyn & Ryzhik, 2007). This

f(y)

formula is initially shown by Griffin & Brown (2005) with slightly different nota-
tion. They call the distribution associated with (@) the Normal-Exponential-Gamma
(NEG) distribution. According to O’Hagan (1979), we simply need to show that
f(y) is outlier prone of order one. Note that f(y) in (@) is obviously symmetric and
bounded. To show outlier proneness for a symmetric density, we only need to verify
the following conditions listed in O’Hagan for the right outlier prone. The left outlier

proneness follows by symmetry.

(i) Given e > 0,h > 0, there exists A such that if y > A, then |f(v')— f(y)] < ef(y)

whenever |y — y| < h.

(ii) (a) f(y) is continuous and positive for all y € R.

(b) There exist a B such that, for all y > B, (I) f(y) is decreasing in y. (II)

b(y) = dlogf(y)/dy exists and is increasing in y.

The part (ii) (a) is obvious from (@). The part (ii) (b) (I) is also obvious (for B = 0).
We simply need to verify (i) and (ii) (b) (II). To verify (i), we use the asymptotic

expansions for the parabolic cylinder function: for |z| >> 1 and |z| >> p, we have



(Page 1029, 9.246, 1. Gradshteyn & Ryzhik, 2007). Using this, we get f(y) ~
ey~ 20 (14-co /> 40(1/y?)) for constant ¢y, ¢5. Take y large so that y > max(2v/b, 2hcs /€, hr/2c4/€),

‘f(z/)—f(y)’ _ ‘(y’—y)f’(y)+(y’—y)2f”(y)/2+---‘
fy) f)

s ) W =) )

- o v - S

~ |y —y)(—2a -1y "+ Oy — )0y ?))

< cshy ' 4 euh?y?

< €,

where c3, ¢4 are some constants.

To show (ii) (b) (II), assume y is positive and extremely large,
by) = L0BIW) _ S') a2 1)y + eiep(=2a = 3y 4 oy
dy f(?/) Cly_Qa—l + 0102?/—2(1_3 + O(y—Qa—?,)
~ —(20+ 1)y

therefore b(y) is increasing in y. This shows that the distribution in (@) is outlier
prone, therefore () holds.

Proposition 1. Consider the model Y;(t) = B(t) + Ei(t), i = 1,...,n,n + 1.
Assuming Yi(t), B(t), Ei(t) are in L*[T], T C R, associated with L*> norm. The
corresponding wavelet domain model can be written as D; = B + E;, with D; =
{dijk}jk, B = {bjr}ik, Ef = {€ijx}tjr, where j = 1,...,J is the index for scales
and k = 1,...,k; is the index for locations. For each (j,k), assuming the following

hierarchical setup for the likelihood, independently across j, k:
(digrlbjr) ~ N0, Aije),
Nk ~ Exp(’/jzkﬂ),
v, ~ Gamma(ajy, bjr).
In addition, assuming priors: bj, ~ m(0;;,), where w(0;;) are proper and are indepen-

dent across j, k. Then given A € B, where B is the o-algebra generated by Borel sets

in L*[T), as ||Yni1(t)]| — oo, we have either
Pr(B(t) € AlYi(t),...,Yu(t), Yni1(t)) — Pr(B(t) € AlYi(t),...,Y.(t))
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Pr(B(t) € AVi(t), ..., Y, (t), Yosr () — Pr <B(t) e AlYi(t), ... ,Yn(t),?n+1(t)) .

where Yoo (t) # Yor (t) and |[Ye (8)]] < o0.

Remark: Proposition 1 says that as the norm of the outlying observation ap-
proaches infinity, the posterior distribution of the mean function B(t) approaches to
a posterior that either depends only on the non-outlying observations, or depends
on the non-outlying observations as well as the “partial” outlier, where the “partial”
outlier are composed of those finite-valued wavelet components.

Proof: By Parseval’s identity, we have |[Y,11(1)[|* = Y2, d2,, s, for which
the right hand side is a finite sum when J is finite. Therefore ||Y,41(t)|| — oo
is equivalent to: (1) all components in {d,11x}jx approach infinity, or (2) a sub-
set of the components {d,+1 jr}jx approach infinity. On the other hand, because of
the map Yi(t) — {dijx},r is an isometric isomorphism, there exist a sequence of
subsets {Cjx}jk, with Cj, C R such that Pr(B(t) € A|Yi(t),..., Y, (), Yoii(t) =
Pr ({bjx € Cjr}jk| D1, - .., Dy, Dypyq). In addition, since we assume independent like-
lihood and priors across j, k, we further have

Pr ({bjx € Cjr}jelD1, ..., Du, Dyga) = [ [ Pr (b € Celduje - -, dnji dnsr i)

jk

. Now we discuss the two cases:
e If all components d,; ji; — 00, then by Lemma 1., we have
Pr(bj € Cji | dijk, - - dnjis dngi1k) — Pr(bjr € Cii | dijks - -, dn k)
for all 7, k. Therefore,

H Pr(bjk < Cjk | dij, ey dn,jk; dn+1,jk> — H Pr(bjk € Cjk ‘ dl,jk7 ... 7dn,jk)-

Jik gk

which implies that Pr (B(t) € A|Yi(t), ..., Yn(t), Yoi1(t)) — Pr(B(t) € A|Yi(t),...,Y.(1)).

26



o If a subset of the components {d,,+1 i} ;x approaches infinity, denote the (j, k)
index of this subset by s = {(j,, k) },- Then we have

[T Pr(bis € Coxldigs- - dujpr dnirge) — ] Pribsw € Co [dijn, - dnji)-
(j,k)Es (j,k)Es
Therefore,

H Pl"(bjk - Ojk | dij, .. 7dn,jka dn—l—l,jk) —

j7k

H Pl‘(bjk - Cjk | dij, .. adn,jka dn—l—l,jk) H PI‘(bjk S Cjk | dl,jka . ’dn,jkx )

(G.k)Es (G:k)es

The right hand side of ([7) is equivalent to Pr (B(t) € AlYi(t),...,Yu(t), ?nﬂ(t)),
where Y, 1 (t) = > (ks Anr1,jk@in(t) and {1 (t) };i represents the wavelet ba-
sis. In addition, ||Y,(t)||* = D (k) ds 74y i < 0.
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Figure 7: Cell line effect on the region [7450D,7700D]. (a) Empirical mean spectra for
each cell line and the corresponding model-based regularized posterior mean functions
from each model. Dotted lines: cell line PC3MMZ2; Solid lines: cell line A375P;
Blue color: estimate of G-WFMM; Red color: estimate of R-WFMM; Black color:
empirical means. (b) The posterior mean estimates for cell line effect functions. Blue
line: G-WFMM; Red line: R-WFMM. (c¢) Posterior probability discovery plot of
1.5-fold expression differences. Sold lines: the point-wise probabilities; Dashed lines:
the threshold obtained using Bayesian FDR based inference, a = 0.10. Blue color:
G-WFMM; Red color: R-WFMM.
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Figure 8: Significant regions of 1.5 fold differences for Organ effect C(t) flagged out
by G-WFMM and R-WFMM. (a) The regions flagged on the grand mean function
Co(t), plotted in the original scale. (b) The same regions flagged on the organ effect
function C(t), plotted in log2 scale. In both (a) and (b), Blue color: regions flagged
by G-WFMM only; Red color: regions detected by R-WFMM only; Green color:
regions detected by both methods; Black color: regions detected by neither methods.
(¢) The corresponding posterior probability estimates and the thresholds obtained
using Bayesian FDR-based inference, with o = 0.10. In (c), Blue color represents

G-WFMM, red color represents R-WFMM.
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Figure 9: Significant regions of 1.5 fold differences for Organ-by-Cell Line interaction
effect C5(t) flagged out by G-WFMM and R-WFMM. (a) The regions flagged on the
grand mean function Cy(t), plotted in the original scale. (b) The same regions flagged
on the organ effect function Cs(t), plotted in log2 scale. In both (a) and (b), Blue
color: regions flagged by G-WFMM only; Red color: regions detected by R-WFMM
only; Green color: regions detected by both methods; Black color: regions detected
by neither methods. (c) The corresponding posterior probability estimates and the
thresholds obtained using Bayesian FDR-based inference, with a = 0.10. In (c), Blue

color represents G-WFMM, red color represents R-WFMM.
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Figure 10: Detecting outliers using scaling parameters from R-WFMM.
Top panels are box plots of scalar outlier scores for individual curves A; (left) and
rats (random effects) ¢y (right). The middle panels plot all spectra (black), with
highlighted spectra in red, which are spectrum 21 (left) and the spectra corresponding
to rat 4 (right), the spectrum and rat with highest scalar outlier scores. The bottom
panels summarize the point-wise outlier scores. In the bottom left panel, the gray line
is the point-wise ratio of Ay1(t) vs. M, (t), where the latter is the median of the \;(¢).
The red color highlights the portions of spectrum 21 that are detected as outliers.
The bottom right is plotted in a similar way for the ratio of ¢4 (t) vs. My(t), where

the latter is the median for the rat effects.
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