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1. MCMC ALGORITHM

1.1 Details of MCMC Algorithm

We perform a Markov Chain Monte Carlo algorithm to draw samples from the pos-

terior of the wavelet-space model parameters, to which the IDWT can be applied

to obtain estimates of the corresponding parameters in the data-space model. The

following are the details of the MCMC.

Step 0. Initialize {νEjk}, {νUjk}, {νBjk} and {λijk}, {φbjk}, {ψajk} based on automatic MLE

estimation and set up prior parameters.

Step 1. For each j, k, rescale the (j,k)th column of model (3) in the paper by premul-

tipling by Λ
−1/2
jk = diag{λijk}ni=1, to obtain

d+
jk = X+

jkb
∗
jk + Z+

jku
∗
jk + e+jk,

where d+
jk = Λ

−1/2
jk djk, X+

jk = Λ
−1/2
jk X, and Z+

jk = Λ
−1/2
jk Z, and E+

jk =

Λ
−1/2
jk e∗jk are weighted versions of the data and design matrices for wavelet co-

efficient (j, k). Performance of this rescaling up front simplifies and speeds cal-

culations in the later steps. We can see that d+
jk|b∗

jk,Σ
+
jk ∼ N(X+

jkb
∗
jk,Σ

+
jk),

with Σ+
jk = Z+

jkΦjk(Z
+
jk)

T + In, where Φjk=diag(φbjk)b.

Step 2. For each a, j, k, update B∗
ajk from f(B∗

ajk|B∗
(−a)jk,λjk,φjk, ψajk,djk), where

λjk = {λijk}ni=1, φjk = {φbjk}mb=1, and djk = {dijk}ni=1. This distribution is a

mixture of a point mass at zero and a Gaussian distribution, with the Gaussian

probability given by αajk = Pr{γajk = 1|B∗
(−a)jk,λjk,φjk, ψajk, πaj,djk} =

Pr{γajk = 1|d+
jk,B

∗
(−a)jk,Σ

+
jk, ψajk, πaj}, which can be obtained from the con-

ditional odds ratio:

Pr{γajk = 1|d+
jk,B

∗
(−a)jk,Σ

+
jk, ψajk, πaj}

Pr{γajk = 0|d+
jk,B

∗
(−a)jk,Σ

+
jk ψajk, πaj}

= Conditional Bayes Factor×Prior Odds.

The prior odds is given by πaj/(1−πaj), and the conditional Bayes factor is (1+

ψajk/Vajk)
−1/2 exp{ζ2ajk(1+Vajk/ψajk)−1/2}, with Vajk = [{X+

ajk}T (Σ+
jk)

−1X+
ajk]

−1,
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ζajk = B̂∗
ajk/

√
Vajk, and B̂∗

ajk = Vajk{X+
ajk}T (Σ+

jk)
−1{d+

jk − X+
(−a)jkB

∗
(−a)jk}.

X+
ajk represents the ath column of X+

jk and X+
(−a)jk is X+

jk with the ath col-

umn removed. Drawing γajk ∼ Bernoulli(αajk), if γajk = 0 we set B∗
ajk = 0.

Otherwise, if γajk = 1, we draw B∗
ajk from N(µB∗

ajk
, VB∗

ajk
), where µB∗

ajk
=

B̂∗
ajk(1 + Vajk/ψaj)

−1 and VB∗

ajk
= Vajk(1 + Vajk/ψaj)

−1.

Take note of the form of B̂∗
ajk, which is involved in µB∗

ajk
, the conditional mean

when γajk = 1. We see from the X+
jk (involving λijk) that observations with

outlying residuals are down-weighted. From the expression of Σ+
jk (involving

φbjk), we see that observations linked to outlying random effect units are also

down-weighted, since the b with large φbjk have larger contributions to the

variance Σ+
jk, and thus are down-weighted by the term (Σ+

jk)
−1 in B̂∗

ajk.

Also, note that this update step was done while integrating out the random

effects, which we have found leads to an improved sampler.

Step 3. Update u∗
jk from f(u∗

jk|b∗
jk,λjk,φjk,djk), which is given by N(µu∗

jk
,Vu∗

jk
),

where µu∗
jk
= {(Z+

jk)
TZ+

jk+Φ−1
jk }−1(Z+

jk)
T (d+

jk−X+
jkB

∗
jk) andVu∗

jk
= {(Z+

jk)
TZ+

jk+

Φ−1
jk }−1, with Φjk = diag{φbjk}mb=1. Note from the conditional mean µu∗

jk
that

the λijk implicit in Z+
jk act as weights on the observations, down-weighting

the influence of outliers, and φbjk act as prior variances leading to nonlinear

shrinkage of u∗
jk, with wavelet coefficients with larger random effect magni-

tudes tending to have larger prior variances, and thus less shrinkage.

Step 4. Conditional on b∗
jk, u

∗
jk and the lasso parameters {νEjk}, {νUjk}, {νBjk} , update

the scaling parameters {λijk}i, {φbjk}b and {ψajk}a from their complete con-

ditional distributions. We credit Park & Casella (2008) with demonstrating

that the complete conditional of the inverse of a scaling parameter in the

Bayesian lasso model has a closed form expression as an inverse Gaussian

distribution. Based on those results, similar calculations in our setting re-

veal that the complete conditional distribution of the inverse of all scaling
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parameters in the R-FMM are also inverse Gaussians, specified as follows.

λ−1
ijk|dijk,b∗

jk,u
∗
jk, ν

E
jk ∼ Inv-Gauss{

√
(νEjk)

2/(dijk −XT
i b

∗
jk − ZTi u

∗
jk)

2, (νEjk)
2},

φ−1
bjk|U∗

bjk, ν
U
jk ∼ Inv-Gauss{

√
(νUjk)

2/(U∗
bjk)

2, (νUjk)
2},

(ψ−1
ajk|B∗

ajk, ν
B
jk, γajk = 1) ∼ Inv-Gauss{

√
(νBjk)

2/(B∗
ajk)

2, (νBjk)
2},

(ψajk|B∗
ajk, ν

B
jk, γajk = 0) ∼ Exp((νBjk)

2/2).

Here XT
i and ZTi are the ith rows of the design matrices X and Z, respectively.

Note that in the final row above, when γajk = 0, the Gibbs update step for

ψajk amounts to sampling from the mixing distribution, since in that state of

the model the distribution is independent of the data conditional on νψaj.

Step 5. Update the lasso parameters {νEjk}, {νUjk}, {νBjk} from their complete condi-

tional distributions. Their squared values are conjugate gammas, i.e., (νEjk)
2|{λijk}i ∼

Gamma(n+aE,
∑n

i=1 λijk/2+b
E), (νUjk)

2|{φbjk}b ∼ Gamma(m+aU ,
∑m

b=1 φbjk/2+

bU), and(νBjk)
2|{ψajk}a ∼ Gamma(Kj + aB,

∑Kj

k=1 ψajk/2 + bB), where Kj is

the number of wavelet coefficients at resolution level j.

Step 6. For each a, j, update πaj|{γajk}k ∼ Beta(
∑

k γajk + aπ, Kj −
∑

k γajk + bπ).

Repeat Steps 1-6 until reaching a pre-specified maximum number of iterations.

1.2 Some Derivations for the MCMC Algorithm

(1) The conditional Bayes factor in Step 2.

From Step 2, it is easy to see that the conditional odds can be written as:

f(γajk = 1|d+
jk,B

∗
(−a)jk,Σ

+
jk(θjk),ν

2)

f(γajk = 0|d+
jk,B

∗
(−a)jk,Σ

+
jk(θjk),ν

2)
=
f(d+

jk|γajk = 1,B∗
(−a)jk,Σ

+
jk(θjk),ν

2)

f(d+
jk|γajk = 0,B∗

(−a)jk,Σ
+
jk(θjk),ν

2)
· f(γajk = 1)

f(γajk = 0)

= Conditional Bayes Factor× Prior Odds,

in which, f(d+
jk|γajk = 0,B∗

(−a)jk,Σ
+
jk(θjk),ν

2) ∝ |Σ+
jk|−1/2 exp{−1

2
(d̃+

jk)
T (Σ+

jk)
−1d̃+

jk},

where d̃+
jk = d+

jk − X+
(−a)jkB

∗
(−a)jk. In the numerator of the conditional Bayes
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factor,

f(d+
jk|γajk = 1,B∗

(−a)jk,Σ
+
jk(θjk),ν

2)

=

∫
f(d+

jk|b∗
jk,Σ

+
jk(θjk),ν

2)f(B∗
ajk|γajk = 1, ψajk)dB

∗
ajk

∝ |Σ+
jk|−1/2ψ

−1/2
ajk K̃−1/2 exp

{
−1

2
(d̃+

jk)
T
[
(Σ+

jk)
−1 − (Σ+

jk)
−1

X
+
(a)jk(X

+
(a)jk)

T (Σ+
jk)

−1/K̃
]
d̃
+
jk

}
,

where K̃ = (X+
(a)jk)

T (Σ+
jk)

−1X+
(a)jk + ψ−1

ajk = V −1
ajk + ψ−1

ajk, and X+
(a)jk is the

ath column of X+
jk. Based on this, the conditional Bayes factor can be further

simplified to

(1 + ψajk/Vajk)
−1/2 exp

{
ζ2ajk(1 + Vajk/ψajk)

−1/2
}
.

(2) The Inverse-Gaussian distributions for updating scaling parameters

in Step 4.

The standard inverse Gaussian distribution (with mean µ, variance µ3/s) has

density f(x|µ, s) = [s/(2πx3)]
1/2

exp{−s(x− µ)2/(2µ2x)}. Consider the scaling
parameter λijk:

f(λijk|dijk, B∗
jk, U

∗
jk, (ν

E
jk)

2) ∝ f(dijk|B∗
jk, U

∗
jk, λijk)f(λijk|(νEjk)2)

∝(λijk)
−1/2 exp{− 1

λijk
[
1

2
(dijk −XT

i B
∗
jk − ZTi U

∗
jk)

2]− λijk
2/(νEjk)

2
},

where XT
i denote the ith row of X, and ZTi denote the ith row of Z. Using

transformations from λijk to λ−1
ijk, we find that (λ−1

ijk|dijk, B∗
jk, U

∗
jk, (ν

E
jk)

2) is dis-

tributed as Inv-Gauss (

√
(νE

jk
)2

(dijk−XT
i B

∗

jk
−ZT

i U
∗

jk
)2
, (νEjk)

2). Similar derivation gives

the conditional inverse Gaussian distributions for φ−1
bjk and ψ−1

ajk.

(3) In Step 4, the updating of ψajk conditional on γajk = 0 needs extra

attention.

According to our prior assumption,

f(ψajk|B∗
ajk, (ν

B
jk)

2, γajk = 0) ∝ f(B∗
ajk|γajk = 0, ψajk)f(ψajk|(νBjk)2) = δ0(B

∗
ajk)·f(ψajk|(νBjk)2).

Therefore we have f(ψajk|B∗
ajk = 0, (νBjk)

2, γajk = 0) = f(ψajk|(νBjk)2), which is

Exp((νBjk)
2/2). Since ψajk is a prior parameter for the case γajk = 1, the above
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step is only for the purpose of forming a strict Gibbs sampler. Here we have

assumed that the prior for ψajk is independent of γajk, i.e. f(ψajk|(νBjk)2, γajk =
1) = f(ψajk|(νBjk)2, γajk = 0) = f(ψajk|(νBjk)2). Similar issues are discussed by

Carlin & Chib (1995); they call f(ψajk|B∗
ajk, (ν

B
jk)

2, γajk = 0) the “pseudo-prior.”

Our simulations and real data application show acceptable mixing for {ψajk}
and the related parameters.

2. INITIAL VALUES AND EMPIRICAL BAYES PARAMETERS

2.1 Initial Values for MCMC

In the MCMC algorithm, we compute initial values based Henderson’s mixed model

equations on pages 275-286 of Searle et al. (1992). In particular, we first obtain

maximum likelihood estimates (MLE) for the variance components, fixed effect and

random effects in model (3), assuming uncorrelated Gaussian distributions for u∗
jk and

e∗jk, i.e., Var(u
∗
jk) = σ2

jkIm, Var(e
∗
jk) = (σ0

jk)
2In, Cov(u

∗
jk, e

∗
jk) = 0. We then initialize

the lasso parameters by matching the mean of the exponential mixing distributions

with the estimated variance components σ̂2
jk, (σ̂

0
jk)

2 and the estimated variance of

B∗
ajk. The initial values for the scaling parameters are then obtained by sampling

from the distributions specified in Step 4, conditional on other initial values.

2.2 Empirical Bayes Parameters for Gamma

The values of the Gamma hyper-parameters (aE, bE), (aU , bU), (aB, bB) are determined

by letting the mode of the Gamma distributions equal to the averaged initial esti-

mators of {(νEjk)2}, {(νUjk)2}, {(νBjk)2} respectively while controlling the variance to be

large, such as 103. The initial estimators of {(νEjk)2}, {(νUjk)2}, {(νBjk)2} are obtained

by match the mean (first moment) of the exponential prior with the MLE estimator

of the variance components, as described in 2.1. The Beta hyper-parameters for {πaj}
were chosen in a similar way by matching the mode of Beta to the averaged initial

estimates {πaj} while control the variance to be fairly large. The initial estimates

{πaj} were computed from the conditional odds in Step 2 while plugging in the initial
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MLE estimates.

To guarantee the stability of the algorithm, some numerical constraints are added

when determining the initial values. Since the ν values control the variance of the DE

distributions, which, if too large, will result in too small variance of DE, which is not

what we want to see in the prior (and likelihood). Therefore we add extra constraints

that all estimated ν initial values are scaled by 10 (i.e. divided by 10) and they are all

bounded above by .1. This will guarantee that all initial values of ν are small enough.

Accordingly the estimated initial values of (a, b) enables a Gamma prior with mode

less than .01, variance around 103. Note that for a Gamma(a,b) distribution with the

mode exactly at .01 and variance exactly at 103, the corresponding (a,b) values will

be a = 1.0003, b = 0.0316, with 95% confidence interval (0, 94.8].

2.3 A Sensitivity Study

To numerically test whether the posterior estimates of our Robust FMM model are

sensitive to the pre-specified variance of Gamma(a, b), we re-run our real data analysis

at 4 different variances for initial values of (a, b), i.e., Var(ν2) = (500, 1000, 5000, 10000).

Figure 1 shows the estimated B1(t) and its 95% credible intervals at each run. We

can not see any significant difference between these posterior estimates. Table 1 show

the integrated squared posterior mean of Ba(t),a = 1, ..., 5 and Ub(t), b = 1, . . . , 5.

No significant difference or pattern is found.

3. FURTHER EXPLANATION OF BAYESIAN FDR

Once we apply the MCMC, we are left with posterior samples of the data-space model

parameters that we can use to perform Bayesian inference. One common task is to

find regions of T for which Ba(t) or some function of the Ba(t) is significantly nonzero.

Suppose we model the log2 scale, and are interested in finding regions of T for

which there is at least a δ-fold difference in the mean intensity. From the MCMC pro-

cedure, suppose we have G posterior samples of the corresponding fixed effect function

B(t) = [B(t1), B(t2), . . . , B(tT )] on the log2 scale, denoted by {B(g)(t), g = 1, . . . , G}.
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Figure 1: The posterior mean of B1(t) under different initial setup.

Variance of Gamma

500 1000 5000 10000

B1(t) 266.20 266.35 266.72 266.14

B2(t) 259.44 259.60 260.00 259.46

B3(t) 260.39 260.09 259.97 260.37

B4(t) 267.69 267.72 267.86 267.81

B5(t) 18.98 18.96 18.62 18.57

U1(t) 1.82 1.94 1.88 1.81

U2(t) 1.62 1.51 1.46 1.55

U3(t) 3.10 3.06 2.91 2.81

U4(t) 1.31 1.31 1.44 1.33

U5(t) 2.68 2.89 2.66 2.76

Table 1: Integrated squared posterior mean of Ba(t), a = 1, ..., 5 and Ub(t), b =

1, . . . , 5 under difference choices of variance for Gamma(a, b) priors.
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From these, we can estimate the point-wise posterior probabilities of at least δ-fold

intensity changes at each spectral location as p(tl) = Pr{|B(tl)| ≥ log2(δ)|Data} ≈
G−1

∑
g I{|B(g)(tl)| ≥ log2(δ)} for all tl, l = 1, . . . , T . Note that 1 − p(tl) can be

interpreted as a “local FDR” for detecting a δ-fold expression difference at tl. Given

a desired global FDR bound α (0 < α < 1), we can determine a threshold φα at

which to flag the set of points with p(tl) ≥ φα as differentially expressed.

To obtain φα, we firstly sort {p(tl), l = 1, . . . , T} in descending order to obtain

{p(l), l = 1, . . . , T}. Then φα = p(s), with s = max{l∗ : (l∗)−1
∑l∗

l=1{1 − p(l)} ≤ α}.
The set of locations ψ = {tl : p(tl) > φα} is the set of discoveries . The threshold φα

is a cut-point on the posterior probabilities that corresponds to an expected Bayesian

FDR of α, in the sense that on average ≥ 100(1− α)% locations of the set ψ should

have a true δ-fold difference. That is, if N(ψ) is the cardinality of the set ψ, defined as

N(ψ) =
∑T

l=1 I(tl ∈ ψ), then N(ψ)−1
∑

tl∈ψ Pr{|B(tl)| ≤ log2(δ)|Data} ≤ α. Morris,

et al. (2008) describe the analogous criterion in the continuous space, based on

Lebesgue measures.

Based on the set of discoveries ψ, we can further compute the model-based es-

timates of the FDR, false negative rate (FNR), sensitivity (Sens) and specificity

(Spec) for detecting differentially expressed locations. Defining ψ ∪ ψ′ = T , and

N(S) as the cardinality of set S, the FDR is estimated by N(ψ)−1
∑

tl∈ψ{1 − p(tl)},
the FNR by N(ψ′)−1

∑
tl∈ψ′ p(tl), the Sens by {∑T

l=1 p(tl)}−1
∑

tl∈ψ p(tl), and Spec by

(
∑T

l=1{1 − p(tl)})−1
∑

tl∈ψ′{1 − p(tl)}. We refer to these as “empirical” quantities,

since they are not based on a gold standard but are estimated based on the specified

model.

We can construct an ROC curve to summarize the overall strength of our results.

Instead of specifying α and computing the corresponding cutpoint φα, we vary the

threshold φ across the entire range of (0,1), compute Sens and Spec for each, and

plot Sens vs. 1-Spec to construct an ROC curve. Again, we refer to this as an

empirical ROC curve, since it is based on model-based estimates, not a knowledge of

the true curve. The area under the empirical ROC curve (AUC) can be computed
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and can serve as a summary measure of the strength of detected differences for these

data. Alternatively, to focus on the most relevant part of the ROC curve with high

specificity, we can compute the p-percentile AUC (AUC-p, e.g. for p = 10) by finding

the area under the portion of the empirical ROC curve with (1 − Spec) ≤ p% and

multiplying this area by 100/p.

The method described above can be sketched in a diagram in Figure 2, where the

solid decreasing line denotes the ordered p(tl), and on the x-axis, the left side of φα

is the p(tl) corresponding to the set of discoveries ψ. The areas denoted by A, B, C,

D are the estimated proportions for true positives, false positives, false negatives and

true negatives, respectively. The threshold φα is indeed determined by constraining

B/(A + B) ≤ α, and the corresponding FNR is estimated by C/(C + D), Sens by

A/(A+ C), Spec by D/(B +D).

The Bayesian FDR-based inference described above yields estimates of the statis-

tics FDR, FNR, Sens, Spec, AUC and AUC-p without knowing the true underlying

function B(t). We call such estimated statistics the “empirical” quantities. In simu-

lations, where we know the true function B(t), we can compute the true statistics by

computing the true false positives, false negatives, true positives and true negatives,

of which we also use A,B,C,D to denote the corresponding counts. The counts are

determined by fixing A+ B = N(ψ) and C +D = N(ψ′), for the same ψ and ψ′ sets

obtained when computing empirical statistics. Among the set of ψ and ψ′, we can

find the number of positions within the curve that truly have δ-fold differences using

the true function B(t). The resulting A,B,C,D counts are listed in Table 2. The

statistics are computed based on these counts using the same formula as was used

for those of Figure 2. We call the statistics computed from Table 2 when true B(t)

is known the “realized” quantities.
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Figure 2: A diagram for Bayesian-FDR based inference.

Table 2: The true FDR inference when true B(t) is known

True |B(tl)| > δ

Yes No Total

Pr{|B(tl)| > δ} > φ
Yes A B N(ψ)

No C D N(ψ′)
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4. EXTRA SIMULATION RESULTS

4.1 Extra Results for the Main Simulation

In simulation study, we also plotted the posterior mean for one fixed effect function

B4(t) with corresponding 95% point-wise credible interval for both methods and all

5 distributions from one simulation run (see Figure 3). From this plot, we see that as

the tails of the random effects and errors get heavier, the R-WFMM provides better

estimation and more adaptive regularization than the G-WFMM, in the sense that

the G-WFMM retains true spikes better while smoothing out more of the “spurious

wiggles”. This is most clear in regions with extreme outliers for which the MLE

deviates far from the truth. In these regions, the G-WFMM is strongly affected by

the outliers, with relatively poor estimation and wide credible intervals, while the

R-WFMM does a much better job, with posterior mean estimates close to the truth

and relatively small credible intervals.

Using the three summary measures (IMSE, IPVar, ITVar) described in the paper,

we computed the ratio of G-WFMM and R-WFMM as measures of relative efficiency.

For each measure, we then summarized the mean ratio across all 10 repetitions, and

across index a for Ba(t) and across index b for Ub(t), along with the corresponding 90%

intervals. Results are presented in Figure 4 with larger numbers indicating greater

efficiency for the R-WFMM. Note that for clearer display, the ratios in Figure 4 are

plotted after log2 transforms but are labeled according to the original scale in y-axis.

To evaluate the relative inferential performance, we also computed posterior sam-

ples for the organ, cell line, and organ-by-cell line functional effects Ci(t), i = 1, 2, 3,

defined in Section 4 in the paper, for both the G-WFMM and R-WFMM. We then

computed posterior probabilities of 1.5-fold expression changes for all 3 functional

effects, and estimated the corresponding thresholds φ10 to declare significance based

on a global FDR of α = 0.10, as described in Section 3. Based on these determina-

tions, we computed both the “realized” and “empirical” FDR, FNR, Sens, and Spec,

plus the AUC and AUC10 for the realized and empirical ROC curves. The “realized”
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Figure 3: Adaptive estimation of B4(t) for G-WFMM and R-WFMM in

simulation. This plot presents posterior means (blue line) and 95% credible inter-

vals (grey bands) for G-WFMM (left) and R-WFMM (right) for all 5 tail distribu-

tional assumptions used in the simulation (rows), along with the true B4(t) (pink)

and naive, unregularized estimates of B4(t) (green). This plot is for one of the 10

simulations. Similar plots for other parameters for all simulation runs are available

as online supplementary material.
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Figure 4: Relative efficiency of R-WFMM to G-WFMM for B(t) and U(t).

The relative efficiencies are obtained by taking the ratio of G-WFMM to R-WFMM

for the integrated mean squared error (IMSE), the integrated posterior variance (IP-

Var), and integrated total variance (ITVar), and summarized by mean, 5th quantile,

and 95th quantile of simulation distribution, combining across simulations and fixed

effect functions indexed by a. The horizontal axis indicates the distributions used to

simulate the random effects and residual errors in the wavelet space.
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statistics are computed based on the true Ba(t), whereas the “empirical” quantities

are estimated from the model without knowledge of the true Ba(t). Results are given

in Table 3.

Using the realized AUC as a summary measure of performance, we see that the

R-WFMM considerably outperformed the G-WFMM for all simulation settings with

heavier-than-normal tails, with the magnitude of the difference increasing with the

heaviness of the tails. This improvement is even more pronounced in the AUC-10,

which focuses on the region of the ROC curve with highest specificity, and can also

been seen in the individual FDR, FNR, Sens, and Spec statistics. These results were

mirrored in the estimated empirical statistics, which did not presume knowledge of

the true Ba(t). Note that the G-WFMM yielded slightly higher AUC and AUC-10

than the R-WFMM in the Gaussian simulation. This indicates, as expected, that

some inferential price was paid for robust modeling when it was not needed, although

the magnitude of this trade-off was not large compared with the improvements seen

in setting of heavy-tailed distributions.

Extensive results from the 10 simulation runs are put into 10 folders, named by

run1 through run10, available online at (http://odin.mdacc.tmc.edu/~jmorris/papers.html).

Each folder contains the following files:

• Plots for fixed effects. For example, B1_SIMU10.pdf is the 5×2 plots of fixed ef-

fect B1(t) obtained in simulation run 10. The 5×2 plots are like Figure 3 in the

main paper, with the columns indicating method (G-WFMM/R-WFMM) and

the rows indicating the distribution used for the simulation (Normal,DE,t3,t2,t1).

• Plots for grand mean effects (C0(t)), organ effects(C1(t)), cell line effects(C2(t)),

and Organ-cell-line interaction(C3(t)) effects. For example, C1_DE_SIMU10.pdf

is the 2× 1 plots of organ effects for DE data in simulation run 10.

• Plots for random effects. For example, U13_t_1_SIMU10.pdf is the 2× 1 plots

for random effect U13(t) for t1 data in simulation run 10.
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Table 3: Simulations: Inferential results for G-WFMM and R-WFMM, including sensitivity, specificity, FDR, FNR, and area

under the ROC curve (AUC) and partial ROC curve (AUC10), all computed both assuming knowledge of the true quantities

Ba(t) (realized) and computed from the model without assuming knowledge of the true quantities (empirical). Summaries

combine information across all fixed effect functions a = 1, . . . , 5

Realized Empirical

Tails Model AUC AUC10 Sens Spec FDR FNR AUC AUC10 Sens Spec FDR FNR

Normal G .818 .346 .288 .964 .251 .214 .816 .377 .245 .984 .097 .321

R .783 .301 .347 .939 .325 .204 .837 .420 .325 .978 .097 .300

DE G .813 .323 .316 .953 .288 .209 .826 .387 .269 .981 .097 .333

R .845 .402 .433 .945 .257 .181 .867 .474 .385 .976 .097 .268

t3 G .868 .453 .507 .938 .248 .162 .859 .461 .406 .970 .098 .293

R .893 .506 .602 .927 .246 .137 .899 .550 .514 .966 .097 .234

t2 G .771 .269 .271 .948 .343 .221 .798 .338 .232 .981 .097 .374

R .871 .469 .484 .950 .219 .167 .883 .501 .418 .975 .097 .252

t1 G .700 .226 .214 .963 .318 .232 .765 .257 .142 .982 .098 .502

R .881 .715 .641 .974 .099 .120 .845 .621 .557 .973 .097 .171
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• Sample trace plots of model parameters. For example, Traceplot2_t_1_SIMU10.pdf

is the second trace plot (5× 2) for t1 data in simulation run 10.

4.2 Details for the Extra Simulation

It is of interest to consider performing simulations with heavy tailed distributions

directly in the data domain, such as Cauchy or other non-Gaussian processes which

may induce spurious artifacts. This study is aimed to show that with data generated

in time domain directly, similar results will be obtained as the result shown in the

paper, i.e., we would expect the proposed robust method giving improved estimation

than the Gaussian model.

We generate data in time domain as follows: Firstly two time domain “reference”

covariances Σu, Σe are obtained from the reference data. These covariance are of

practical forms since they are obtained based on a real dataset. Secondly, the ran-

dom effects Ub(t) and Ei(t) are generated from multivariate t distributions with ν

degree of freedom and scaling covariances Σu, Σe respectively. The design matrices

and fixed effects remain the same as those in the original simulations in the paper.

Figure 5 shows the plots of the data generated with ν = 1, and Figure 6 shows the

reference covariances and the resulting sample covariances. Note that for multivari-

ate t distribution, denoted as t(ν, µ,Σ), the mean is µ, the covariance is ν/(ν − 2)Σ.

The true covariances do not exist when the degree of freedom ν ≤ 2. We applied

the G-WFMM method and R-WFMM method to this data. Table 4 shows the re-

sulting IMSE for the fixed and random effects. Note that the IMSE is computed by
∫
(θ̂(t) − θ0(t))

2dt. From Table 4 we see that using the proposed R-WFMM model,

the resulting IMSE for fixed and random effects are significantly smaller than that

using the G-WFMM model.
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Figure 5: The plot of data generated from multivariate t distribution with degree of

freedom 1.

IMSE

B1(t) B2(t) B3(t) B4(t) B5(t) U1(t) U2(t) U3(t) U4(t)

G-WFMM 1.21 1.14 0.86 1.02 0.003 1.17 1.28 1.32 1.14

R-WFMM 0.53 0.76 0.47 0.58 0.002 0.53 0.61 0.69 0.49

Table 4: IMSE for the G-WFMM and R-WFMM estimate for Ba(t), a = 1, ..., 5 and

Ub(t), b = 1, . . . , 5.
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Figure 6: The image plot of reference covariances and sample covariances. The top

two panels show the reference covariances for random effect and error that are used

to generate data; the bottom two panels show the respective sample covariances

estimated from the generated data.
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5. EXTRA REAL DATA APPLICATION RESULTS

5.1 More Results Using Bayesian FDR

Here we show more results for real data applications. Figure 7 zooms in to demon-

strate one of the regions flagged as significant by the R-WFMM but not the G-WFMM

[7450D, 7700D]. The top panel contains the empirical mean spectra and model-based

regularized posterior mean estimates for the A375P (solid line) and PC3MM2 (dot-

ted line) cell lines, respectively, the middle panel contains the posterior mean cell line

effect functions for the two methods, and the third panel contains the corresponding

posterior probability plots (1.5-fold).

In addition to the significant regions for Cell Line effect plotted in Figure 2 in the

paper, here we show the significant regions plots for Organ effect in Figure 8, and for

Organ-by-Cell Line interaction in Figure 9.

5.2 Results for Outlier Detection

To investigate possible outliers in the data, we computed the statistics λi.. for each

individual spectrum, i = 1, . . . , 32, and φb.. for each individual rat, b = 1, . . . , 16,

and constructed box-plots of these quantities (shown in the top panels of Figure 10).

None of the individual curves or rats were flagged as outliers, defined as 1.5×IQR

above the median. To check whether the regions of certain curves were outliers, we

also computed the functional outlier statistics {λi(t)} and {φb(t)} for all spectra and

rats, respectively. For each t, we computed the point-wise box-plot statistics, i.e.

medians Mλ(t) and Mφ(t) and IQRs given by IQRλ(t) and IQRφ(t). We flagged

regions of individual spectra with λi(t) > Mλ(t) + 1.5IQRλ(t) and individual rats

with φb(t) > Mφ(t) + 1.5IQRφ(t). For illustration, we summarize the results for one

spectrum (i = 21) with largest {λi..} and the one rat (b = 4) with largest {φb..},
marked by the triangle and square, respectively, in the top panel of Figure 10. The

bottom panel contains Mλ(t) and Mφ(t) in black, and the flagged regions of λ21(t)

and φ4(t) in red, and the middle panel plots the corresponding raw spectra (red)

along with the others (black). From the left-hand panels, we see that spectrum 21
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has unusually high levels of protein expression for some proteins around 4000D, and

unusually low levels of expression for several peaks around 5000D and 10000D. From

the right-hand panels, we see that rat 4 has unusually low levels of some proteins

around 5000D, and unusually high levels for some proteins around 7000D. These

outlier functions are useful diagnostics to identify unusual curves or individuals for

further investigation.

6. THE GAMMA MIXTURE OF DE PRIOR

Assuming Y ∼ N(0, λ) and λ ∼ Exp(ν2/2), we can integrate λ out to get Double

Exponential distribution of Y: Y ∼ DE(0, 1/ν). If we further have ν2 ∼ Gamma(a, b),

we can further integrate ν out to get the density of Y as

f(y) =
a√
π

2a√
2b

Γ(a+
1

2
) exp

{
y2

8b

}
D−2a−1

( |y|√
2b

)
(1)

whereDν(·) is the parabolic cylinder function defined asDp(z) = e−z
2/4/Γ(−p)

∫∞
0

exp{−xz−
x2/2}x−p−1dx, p < 0 (Page 1028, 9.241, 2., Gradshteyn & Ryzhik, 2007). This

formula is initially shown by Griffin & Brown (2005) with slightly different nota-

tion. They call the distribution associated with (1) the Normal-Exponential-Gamma

(NEG) distribution. The NEG distribution is always proper as long as 0 < a, b <∞.

Here a controls the heaviness of the tails, and b controls the scale.

An equivalent formula of (1) is:

f(y) =
ba

Γ(a)

∫ ∞

0

ν2a exp{−ν|x| − bν2}dν. (2)

The above formula is obtained by directly integrating ν out from the hierarchical set:

DE(0, 1/ν) and ν2 ∼ Gamma(a, b).

7. THE EXPONENTIAL-GAMMA MIXING DISTRIBUTION

Upon the request of one referee, we’d like to compare the Exponential-Gamma mixing

distribution with the mixing distribution that leads to Cauchy. In the hierarchical

setup of scale mixture of normals with Exponential and Gamma priors, we try to
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collapse the Exponential and Gamma priors first by integrating ν2jk, and compare

that with the mixing distribution that leads to Cauchy. We would like to see if the

integrated marginal distribution is of Cauchy type.

Consider mixing distributions with respect to normal kernel. We will evaluate

the heaviness of tails using the concept of regular variation. An introduction of

regular variation can be found in Andrade & O’Hagan (2006). Assuming y ∼ N(0, λ),

λ ∼ Exp(ν2/2) and ν2 ∼ Gamma(a, b), we can integrate ν2 out to get the mixing

distribution:

g(λ) =
a

2b
(1 +

λ

2b
)−(a+1). (3)

Since this density function is regularly varying with order ρ = −(a + 1), while on

the other hand Inv-Gamma(1/2, 1/2) is regularly varying with order ρ = −3/2, the

distribution (3) has heavier (right) tail than Inv-Gamma(1/2, 1/2) if a < 1/2. Since

normal mixture of Inv-Gamma(1/2,1/2) results in Cauchy, we therefore expect that

using mixing distribution (3), the resulting distribution will have heavier tails than

Cauchy provided a < 1/2. In fact, since the resulting distribution has density (1),

which, when |y|√
2b

is large, can be approximated by

f(y) ≈ c(
|y|√
2b

)−2a−1. (4)

The density in (4) is regularly varying with rate ρ = −2a− 1, while Cauchy density

is regularly vary with rate ρ = −2. Therefore as long as 0 < a < 1/2, distribution

(4) has heavier than Cauchy tails. This is consistent with the result when comparing

the tails of mixing distributions.

8. PROOF OF ROBUSTNESS AS ONE CURVE APPROACHES INFINITY

We now provide some preliminary results on the robustness properties of the models.

Although it is well known that in simple regression, using heavy tailed distributions

will result in robust estimates, to our knowledge, no formal definition has been made

for the robustness in functional data regression. We believe that both the definition
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and theoretical investigation deserve another intensive study. Results shown here are

only preliminarily and are built under the particular assumptions made in this paper.

Essentially, we’d like to show that under the hierarchical setup of our model,

the posterior estimates are (asymptotically) not influenced by outlying observations.

We approach this by showing that as one outlying observation goes to infinity, the

posterior distribution approaches to that depending only on the non-outlying data.

As the model is constructed through wavelet transform, we just need to show the

equivalent properties for wavelet coefficients.

Lemma 1. Consider a simple model di = µ + ǫi, i = 1, . . . , n, n + 1. The prior

distribution for µ, π(µ) is proper. The likelihood is assumed through the following

hierarchical setup: di|µ ∼ N(µ, λi), λi ∼ Exp{ν2/2}, ν2 ∼ Gamma(a, b), where

0 < a, b <∞ and a, b are known constants. Then the resulting likelihood distribution

for this model is is outlier-prone, which means that the posterior distribution

Pr(µ < c | d1, d2, . . . , dn+1) −→ Pr(µ < c | d1, d2, . . . , dn), as |dn+1| → ∞, (5)

for all c and {d1, . . . , dn} and for all proper π(µ).

Remark: The terminology outlier prone is defined in O’Hagan (1979), which

essentially means that a data-generating distribution “have well-behaved and “thick”

tail, so that when the observation becomes large the information it carries is weak.”

The counterpart outlier resistance means that “a posterior distribution that necessar-

ily “increases” when an observation increases”. It was shown that normal distribution

is in the outlier resistant family, while t-distribution is outlier prone.

Proof: We will follow the results of O’Hagan (1979). Firstly, provided that the

likelihood f(·) is bounded, if the outlier proneness holds for some n, it holds for n=1.

Since the posterior distribution can be written as:
∫

µ<c

f(µ|d1, . . . , dn, dn+1)dµ

∝
∫

µ<c

n+1∏

i=1

f(di|µ)π(µ)dµ

∝
∫

µ<c

f(dn+1|µ)dG(µ|d1, . . . , dn)
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where f(di|µ) is the likelihood and G(µ|d1, . . . , dn) is the posterior distribution based

on the first n observations. If (5) holds for any proper prior π(µ), we can treat

the G(µ|d1, . . . , dn) as a “new” proper prior, corresponding to a single observation

dn+1. It thus holds for n = 1. Similar arguments can be found on Page 362 of

O’Hagan(1979). Secondly, under the hierarchical setup, if we integrate out the

intermediate parameters λi and ν
2, we find that the likelihood (residual) distribution

f(d− µ) takes the following form:

f(y) =
a√
π

2a√
2b

Γ(a+
1

2
) exp

{
y2

8b

}
D−2a−1

( |y|√
2b

)
(6)

whereDν(·) is the parabolic cylinder function defined asDp(z) = e−z
2/4/Γ(−p)

∫∞
0

exp{−xz−
x2/2}x−p−1dx, p < 0 (Page 1028, 9.241, 2., Gradshteyn & Ryzhik, 2007). This

formula is initially shown by Griffin & Brown (2005) with slightly different nota-

tion. They call the distribution associated with (6) the Normal-Exponential-Gamma

(NEG) distribution. According to O’Hagan (1979), we simply need to show that

f(y) is outlier prone of order one. Note that f(y) in (6) is obviously symmetric and

bounded. To show outlier proneness for a symmetric density, we only need to verify

the following conditions listed in O’Hagan for the right outlier prone. The left outlier

proneness follows by symmetry.

(i) Given ǫ > 0, h > 0, there exists A such that if y > A, then |f(y′)−f(y)| < ǫf(y)

whenever |y′ − y| < h.

(ii) (a) f(y) is continuous and positive for all y ∈ R.

(b) There exist a B such that, for all y ≥ B, (I) f(y) is decreasing in y. (II)

b(y) = dlogf(y)/dy exists and is increasing in y.

The part (ii) (a) is obvious from (6). The part (ii) (b) (I) is also obvious (for B = 0).

We simply need to verify (i) and (ii) (b) (II). To verify (i), we use the asymptotic

expansions for the parabolic cylinder function: for |z| >> 1 and |z| >> p, we have

Dp(z) ∼ e−
z2

4 zp
(
1− p(p− 1)

2z2
+ o(1/z2)

)
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(Page 1029, 9.246, 1. Gradshteyn & Ryzhik, 2007). Using this, we get f(y) ∼
c1y

−2a−1(1+c2/y
2+o(1/y2)) for constant c1, c2. Take y large so that y > max(2

√
b, 2hc3/ǫ, h

√
2c4/ǫ),

∣∣∣∣
f(y′)− f(y)

f(y)

∣∣∣∣ =

∣∣∣∣
(y′ − y)f ′(y) + (y′ − y)2f ′′(y)/2 + ...

f(y)

∣∣∣∣

=

∣∣∣∣(y
′ − y)

f ′(y)

f(y)
+

(y′ − y)2

2

f ′′(y)

f(y)
+ ...

∣∣∣∣
≈ |(y′ − y)(−2a− 1)y−1 +O((y′ − y)2)O(y−2))|

< c3hy
−1 + c4h

2y−2

< ǫ,

where c3, c4 are some constants.

To show (ii) (b) (II), assume y is positive and extremely large,

b(y) =
d log f(y)

dy
=
f ′(y)

f(y)
≈ c1(−2a− 1)y−2a−2 + c1c2(−2a− 3)y−2a−4 + o(y−2a−4)

c1y−2a−1 + c1c2y−2a−3 + o(y−2a−3)

≈ −(2a+ 1)y−1

therefore b(y) is increasing in y. This shows that the distribution in (6) is outlier

prone, therefore (5) holds.

Proposition 1. Consider the model Yi(t) = B(t) + Ei(t), i = 1, . . . , n, n + 1.

Assuming Yi(t), B(t), Ei(t) are in L2[T ], T ⊆ R, associated with L2 norm. The

corresponding wavelet domain model can be written as Di = B + E∗
i , with Di =

{di,jk}jk, B = {bjk}jk, E∗
i = {ǫi,jk}jk, where j = 1, . . . , J is the index for scales

and k = 1, . . . , kj is the index for locations. For each (j, k), assuming the following

hierarchical setup for the likelihood, independently across j, k:

(di,jk|bjk) ∼ N(0, λi,jk),

λi,jk ∼ Exp(ν2jk/2),

ν2jk ∼ Gamma(ajk, bjk).

In addition, assuming priors: bjk ∼ π(θjk), where π(θjk) are proper and are indepen-

dent across j, k. Then given A ∈ B, where B is the σ-algebra generated by Borel sets

in L2[T ], as ||Yn+1(t)|| → ∞, we have either

Pr (B(t) ∈ A|Y1(t), . . . , Yn(t), Yn+1(t)) −→ Pr (B(t) ∈ A|Y1(t), . . . , Yn(t))
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or

Pr (B(t) ∈ A|Y1(t), . . . , Yn(t), Yn+1(t)) −→ Pr
(
B(t) ∈ A|Y1(t), . . . , Yn(t), Ỹn+1(t)

)
.

where Ỹn+1(t) 6= Yn+1(t) and ||Ỹn+1(t)|| <∞.

Remark: Proposition 1 says that as the norm of the outlying observation ap-

proaches infinity, the posterior distribution of the mean function B(t) approaches to

a posterior that either depends only on the non-outlying observations, or depends

on the non-outlying observations as well as the “partial” outlier, where the “partial”

outlier are composed of those finite-valued wavelet components.

Proof: By Parseval’s identity, we have ||Yn+1(t)||2 =
∑

j,k d
2
n+1,jk, for which

the right hand side is a finite sum when J is finite. Therefore ||Yn+1(t)|| → ∞
is equivalent to: (1) all components in {dn+1,jk}jk approach infinity, or (2) a sub-

set of the components {dn+1,jk}jk approach infinity. On the other hand, because of

the map Yi(t) → {di,jk}jk is an isometric isomorphism, there exist a sequence of

subsets {Cjk}jk, with Cjk ⊂ R such that Pr (B(t) ∈ A|Y1(t), . . . , Yn(t), Yn+1(t)) =

Pr ({bjk ∈ Cjk}jk|D1, . . . , Dn, Dn+1). In addition, since we assume independent like-

lihood and priors across j, k, we further have

Pr ({bjk ∈ Cjk}jk|D1, . . . , Dn, Dn+1) =
∏

jk

Pr (bjk ∈ Cjk|d1,jk, . . . , dn,jk, dn+1,jk)

. Now we discuss the two cases:

• If all components dn+1,jk → ∞, then by Lemma 1., we have

Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk, dn+1,jk) −→ Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk).

for all j, k. Therefore,

∏

j,k

Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk, dn+1,jk) −→
∏

j,k

Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk).

which implies that Pr (B(t) ∈ A|Y1(t), . . . , Yn(t), Yn+1(t)) −→ Pr (B(t) ∈ A|Y1(t), . . . , Yn(t)).
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• If a subset of the components {dn+1,jk}jk approaches infinity, denote the (j, k)

index of this subset by s = {(jp, kq)}q. Then we have

∏

(j,k)∈s
Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk, dn+1,jk) −→

∏

(j,k)∈s
Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk).

Therefore,

∏

j,k

Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk, dn+1,jk) −→



∏

(j,k)/∈s
Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk, dn+1,jk)






∏

(j,k)∈s
Pr(bjk ∈ Cjk | d1,jk, . . . , dn,jk)


 .(7)

The right hand side of (7) is equivalent to Pr
(
B(t) ∈ A|Y1(t), . . . , Yn(t), Ỹn+1(t)

)
,

where Ỹn+1(t) =
∑

(j,k)/∈s dn+1,jkφjk(t) and {φjk(t)}jk represents the wavelet ba-
sis. In addition, ||Ỹn(t)||2 =

∑
(j,k)/∈s d

2
n+1,jk <∞.
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Figure 7: Cell line effect on the region [7450D,7700D]. (a) Empirical mean spectra for

each cell line and the corresponding model-based regularized posterior mean functions

from each model. Dotted lines: cell line PC3MM2; Solid lines: cell line A375P;

Blue color: estimate of G-WFMM; Red color: estimate of R-WFMM; Black color:

empirical means. (b) The posterior mean estimates for cell line effect functions. Blue

line: G-WFMM; Red line: R-WFMM. (c) Posterior probability discovery plot of

1.5-fold expression differences. Sold lines: the point-wise probabilities; Dashed lines:

the threshold obtained using Bayesian FDR based inference, α = 0.10. Blue color:

G-WFMM; Red color: R-WFMM.
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Figure 8: Significant regions of 1.5 fold differences for Organ effect C1(t) flagged out

by G-WFMM and R-WFMM. (a) The regions flagged on the grand mean function

C0(t), plotted in the original scale. (b) The same regions flagged on the organ effect

function C1(t), plotted in log2 scale. In both (a) and (b), Blue color: regions flagged

by G-WFMM only; Red color: regions detected by R-WFMM only; Green color:

regions detected by both methods; Black color: regions detected by neither methods.

(c) The corresponding posterior probability estimates and the thresholds obtained

using Bayesian FDR-based inference, with α = 0.10. In (c), Blue color represents

G-WFMM, red color represents R-WFMM.
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Figure 9: Significant regions of 1.5 fold differences for Organ-by-Cell Line interaction

effect C3(t) flagged out by G-WFMM and R-WFMM. (a) The regions flagged on the

grand mean function C0(t), plotted in the original scale. (b) The same regions flagged

on the organ effect function C3(t), plotted in log2 scale. In both (a) and (b), Blue

color: regions flagged by G-WFMM only; Red color: regions detected by R-WFMM

only; Green color: regions detected by both methods; Black color: regions detected

by neither methods. (c) The corresponding posterior probability estimates and the

thresholds obtained using Bayesian FDR-based inference, with α = 0.10. In (c), Blue

color represents G-WFMM, red color represents R-WFMM.
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Figure 10: Detecting outliers using scaling parameters from R-WFMM.

Top panels are box plots of scalar outlier scores for individual curves λi.. (left) and

rats (random effects) φb.. (right). The middle panels plot all spectra (black), with

highlighted spectra in red, which are spectrum 21 (left) and the spectra corresponding

to rat 4 (right), the spectrum and rat with highest scalar outlier scores. The bottom

panels summarize the point-wise outlier scores. In the bottom left panel, the gray line

is the point-wise ratio of λ21(t) vs. Mλ(t), where the latter is the median of the λi(t).

The red color highlights the portions of spectrum 21 that are detected as outliers.

The bottom right is plotted in a similar way for the ratio of φ4(t) vs. Mφ(t), where

the latter is the median for the rat effects.
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