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Web Appendix A

Details of the MCMC Algorithm for R-WFMM

We perform a Markov Chain Monte Carlo algorithm to draw samples from the posterior of

the wavelet-space model parameters of R-WFMM, to which the IDWT can be applied to obtain

estimates of the corresponding parameters in the data-space model. The following are the details

of the MCMC. Note that when training the data, we combine the design matrix V and X together,

and both are treated as fixed effects. Therefore in the following algorithm, the first q rows of B∗

will be G∗.

Step 0. Initialize {νEjk}, {ν
U
jk}, {ν

B
jk} and {λijk}, {φbjk}, {ψajk} based on automatic MLE estimation

and set up prior parameters.

Step 1. For each j, k, rescale the (j,k)th column of model (3) in the paper by premultipling by

Λ
−1/2
jk = diag{λijk}

n
i=1, to obtain

d+
jk = X+

jkb
∗

jk + Z+
jku

∗

jk + e+jk,
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where d+
jk = Λ

−1/2
jk djk, X

+
jk = Λ

−1/2
jk X, and Z+

jk = Λ
−1/2
jk Z, and E+

jk = Λ
−1/2
jk e∗jk are weighted

versions of the data and design matrices for wavelet coefficient (j, k). Performance of this

rescaling up front simplifies and speeds calculations in the later steps. We can see that

d+
jk|b

∗

jk,Σ
+
jk ∼ N(X+

jkb
∗

jk,Σ
+
jk), with Σ+

jk = Z+
jkΦjk(Z

+
jk)

T + In, where Φjk=diag(φbjk)b.

Step 2. For each a, j, k, update B∗

ajk from f(B∗

ajk|B
∗

(−a)jk,λjk,φjk, ψajk,djk), where λjk = {λijk}
n
i=1,

φjk = {φbjk}
m
b=1, and djk = {dijk}

n
i=1. This distribution is a mixture of a point mass at

zero and a Gaussian distribution, with the Gaussian probability given by αajk = Pr{γajk =

1|B∗

(−a)jk,λjk,φjk, ψajk, πaj ,djk} = Pr{γajk = 1|d+
jk,B

∗

(−a)jk,Σ
+
jk, ψajk, πaj}, which can be

obtained from the conditional odds ratio:

Pr{γajk = 1|d+
jk,B

∗

(−a)jk,Σ
+
jk, ψajk, πaj}

Pr{γajk = 0|d+
jk,B

∗

(−a)jk,Σ
+
jk ψajk, πaj}

= Conditional Bayes Factor× Prior Odds.

The prior odds is given by πaj/(1−πaj), and the conditional Bayes factor is (1+ψajk/Vajk)
−1/2

exp{ζ2ajk(1 + Vajk/ψajk)
−1/2}, with Vajk = [{X+

ajk}
T (Σ+

jk)
−1X+

ajk]
−1, ζajk = B̂∗

ajk/
√

Vajk,

and B̂∗

ajk = Vajk{X
+
ajk}

T (Σ+
jk)

−1{d+
jk −X+

(−a)jkB
∗

(−a)jk}. X+
ajk represents the ath column of

X+
jk and X+

(−a)jk is X+
jk with the ath column removed. Drawing γajk ∼ Bernoulli(αajk), if

γajk = 0 we set B∗

ajk = 0. Otherwise, if γajk = 1, we draw B∗

ajk from N(µB∗

ajk
, VB∗

ajk
), where

µB∗

ajk
= B̂∗

ajk(1 + Vajk/ψaj)
−1 and VB∗

ajk
= Vajk(1 + Vajk/ψaj)

−1.

Take note of the form of B̂∗

ajk, which is involved in µB∗

ajk
, the conditional mean when γajk = 1.

We see from the X+
jk (involving λijk) that observations with outlying residuals are down-

weighted. From the expression of Σ+
jk (involving φbjk), we see that observations linked to

outlying random effect units are also down-weighted, since the b with large φbjk have larger

contributions to the variance Σ+
jk, and thus are down-weighted by the term (Σ+

jk)
−1 in B̂∗

ajk.

Also, note that this update step was done while integrating out the random effects, which

we have found leads to an improved sampler.

Step 3. Update u∗

jk from f(u∗

jk|b
∗

jk,λjk,φjk,djk), which is given by N(µu∗
jk
,Vu∗

jk
), where µu∗

jk
=

{(Z+
jk)

TZ+
jk + Φ−1

jk }
−1(Z+

jk)
T (d+

jk −X+
jkB

∗

jk) and Vu∗
jk

= {(Z+
jk)

TZ+
jk + Φ−1

jk }
−1, with Φjk =

diag{φbjk}
m
b=1. Note from the conditional mean µu∗

jk
that the λijk implicit in Z+

jk act as
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weights on the observations, down-weighting the influence of outliers, and φbjk act as prior

variances leading to nonlinear shrinkage of u∗

jk, with wavelet coefficients with larger random

effect magnitudes tending to have larger prior variances, and thus less shrinkage.

Step 4. Conditional on b∗

jk, u
∗

jk and the lasso parameters {νEjk}, {ν
U
jk}, {ν

B
jk} , update the scaling

parameters {λijk}i, {φbjk}b and {ψajk}a from their complete conditional distributions. We

credit Park & Casella (2008) with demonstrating that the complete conditional of the inverse

of a scaling parameter in the Bayesian lasso model has a closed form expression as an inverse

Gaussian distribution. Based on those results, similar calculations in our setting reveal that

the complete conditional distribution of the inverse of all scaling parameters in the R-FMM

are also inverse Gaussians, specified as follows.

λ−1
ijk|dijk,b

∗

jk,u
∗

jk, ν
E
jk ∼ Inv-Gauss{

√

(νEjk)
2/(dijk −XT

i b
∗

jk − ZTi u
∗

jk)
2, (νEjk)

2},

φ−1
bjk|U

∗

bjk, ν
U
jk ∼ Inv-Gauss{

√

(νUjk)
2/(U∗

bjk)
2, (νUjk)

2},

(ψ−1
ajk|B

∗

ajk, ν
B
jk, γajk = 1) ∼ Inv-Gauss{

√

(νBjk)
2/(B∗

ajk)
2, (νBjk)

2},

(ψajk|B
∗

ajk, ν
B
jk, γajk = 0) ∼ Exp((νBjk)

2/2).

Here XT
i and ZTi are the ith rows of the design matrices X and Z, respectively. Note that

in the final row above, when γajk = 0, the Gibbs update step for ψajk amounts to sampling

from the mixing distribution, since in that state of the model the distribution is independent

of the data conditional on νψaj.

Step 5. Update the lasso parameters {νEjk}, {νUjk}, {νBjk} from their complete conditional distri-

butions. Their squared values are conjugate gammas, i.e., (νEjk)
2|{λijk}i ∼ Gamma(n +

aE,
∑n

i=1 λijk/2+b
E), (νUjk)

2|{φbjk}b ∼ Gamma(m+aU ,
∑m

b=1 φbjk/2+b
U), and(νBjk)

2|{ψajk}a ∼

Gamma(Kj + aB,
∑Kj

k=1 ψajk/2 + bB), where Kj is the number of wavelet coefficients at res-

olution level j.

Step 6. For each a, j, update πaj|{γajk}k ∼ Beta(
∑

k γajk + aπ, Kj −
∑

k γajk + bπ).

Repeat Steps 1-6 until reaching a pre-specified maximum number of iterations.
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Web Appendix B

Proof of Proposition 1

Proof: For the case of b1 6= b2, from Corollary 1 of Nadarajah and Kotz (2005), we have for

Z > 0,

f(z) = dF (z)/dz =
[

µ/2 + µ2/(4(λ− µ))− µ2/(4(λ+ µ))
]

exp{−µz}

+ [λµ/(4(µ+ λ))− λµ/(4(λ− µ))] exp{−λz}.

For Z < 0,

f(z) = dF (z)/dz =
[

µ/2− µ2/(4(λ+ µ))− µ2/(4(µ− λ))
]

exp{µz}

+ [λµ/(4(µ− λ)) + λµ/(4(λ+ µ))] exp{λz}.

Now since the density of DE is defined differently with Nadarajah and Kotz (2005), the λ in Corollary

1 of Nadarajah and Kotz (2005) corresponds to 1/b1 in our Proposition 1, and µ corresponds to

1/b2 in our Proposition 1. Replacing λ = 1/b1, µ = 1/b2, we get for z > 0,

f(z) =

[

1

2b2
+

1/b22
4(1/b1 − 1/b2)

−
1/b22

4(1/b1 + 1/b2)

]

exp{−z/b2}

+

[

1/(b1b2)

4(1/b1 + 1/b2)
−

1/(b1b2)

4(1/b1 − 1/b2)

]

exp{−z/b1}.

For z < 0,

f(z) =

[

1

2b2
−

1/b22
4(1/b1 + 1/b2)

−
1/b22

4(1/b2 − 1/b1)

]

exp{z/b2}

+

[

1/(b1b2)

4(1/b2 − 1/b1)
+

1/(b1b2)

4(1/b2 + 1/b1)

]

exp{z/b1}.

Simplifying the above formula and combine the cases of z > 0 and z < 0, we get the result of

Proposition 1 for b1 6= b2.

In case of b1 = b2 = b, we see that X1 and X2 are i.i.d. DE(0, b). Firstly note that the DE

distribution is a special case of Normal Gamma (NG) distribution with the shape parameter equals

1, and the inverse scale parameter 1/(2b2), i.e., a DE(0, b) is a NG(1, 1/(2b2)). An NG distribution
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is defined as the marginal distribution of a scale mixture of Gamma, i.e., θ ∼ NG(λ, 1/(2γ2)), if

θ ∼ N(0,Ψ) and Ψ ∼ Gamma(λ, 1/(2γ2)). The formula of the general NG(λ, 1/(2γ2)) density

can be found in equation (3) of [2]. The NG distribution has the property that the sum of two

i.i.d. NG(1, 1/(2b2)) is distributed as NG(2, 1/(2b2)), with the shape parameter doubled. Using

the equation (3) of Griffin and Brown (2010) and applying the formula 10.2.17 in page 444 of

Abramowitz and Stegun (1972) for the simplified Bessel function, we obtain the density for the case

of b1 = b2 = b shown in Proposition 1.

Web Appendix C

Classification Performance using WFMM when Ignoring the Random Effects

In the pancreatic cancer application, in order to see what happens if one ignores the random

effects (time block effects), we refitted the GWFMM and RWFMM model without using the block

information (both in training and prediction steps). The models are fitted under the setup where

90% wavelet compression is used, and for both 4-fold cross validation setups(one for in-block clas-

sification and one for out-of-block classification). We denoted the methods of not using random

effects as “GWFMM-90, no RE” and “RWFMM-90, no RE” for the Gaussian model and Robust

model, respectively. The results are compared with all other FMM classification outputs in Table 1.

The corresponding empirical ROC curves are plotted in Figure 3. Both Table 1 and Figure 3 show

that for the in-block classification cases, the prediction performance is systematically degraded if

ignoring the random effects. For the out-of-block classification case, the performance of GWFMM

is similar (with AUC .818 vs. .815) if ignoring the random effects, whearas the RWFMM model

performs worse when ignoring the random effects. In summary, we found that at least for this data,

if random effects present, ignoring them will most likely lead to worse prediction. The prediction

power can be systematically improved if taking into account these effects using the proposed FMM

framework.

Web Appendix D

Allowing the Covariance to Vary by Class
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In both the G-WFMM and R-WFMM discussed in Sections 3.1 and 3.2, we assumed that the

distribution of U(t) and E(t) in model (1) were common for all classes. In some settings, one may

wish the random effect and/or residual error covariances to vary across class, which would yield

more flexible classification rules. This has been previously described for the G-WFMM (Morris and

Carroll, 2006) and involves expanding the variance components {q∗j,k}, {s
∗

j,k} to {q∗, cj,k }, {s∗, cj,k }, c =

1, . . . , q. For prediction, the posterior predictive probability needs to be adjusted so that the

corresponding variance components of c = j are used when the likelihood conditions on class

label c = j. In the R-WFMM, we allow the population scale parameters {νEjk} and {νUjk} to be class

specific, i.e., {νE,cjk }, {νU,cjk }, c = 1, . . . , q. Correspondingly, their Gamma hyper-prior parameters

(αE, βE) and (αU , βU) would also be indexed by c. This involves only minor changes of the previously

described MCMC algorithm. Similarly, for prediction, we need to adjust the DE likelihood by

plugging in the corresponding population scale parameters when conditioning on a particular c = j.
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Figure 1: (Web figure) ROC plot for out of block prediction.

7



1000 2000 3000 4000 5000 6000
−5

0

5

In
 lo

g 2 s
ca

le

Plot of 4 Randomly Selected Real Spectra from Pancreatic Cancer Data

 

 

88 55 170 180

1000 2000 3000 4000 5000 6000
−5

0

5

In
 lo

g 2 s
ca

le

The Corresponding Virtual Spectra Generated from GWFMM Model

1000 2000 3000 4000 5000 6000
−5

0

5

In
 lo

g 2 s
ca

le

The Corresponding Virtual Spectra Generated from RWFMM Model

Figure 2: (Web figure) “Virtual Sepctra” plot.

8



0 0.5 1
0

0.2

0.4

0.6

0.8

1

1−Specificity

S
en

si
tiv

ity

With and without Random Effects − in Block Prediction

 

 

GWFMM−90

GWFMM−90, no RE

RWFMM−90

RWFMM−90, no RE

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1−Specificity

S
en

si
tiv

ity

With and without Random Effects − out of Block Prediction

 

 

GWFMM−90
GWFMM−90, no RE
RWFMM−90
RWFMM−90, no RE

Figure 3: (Web figure) Empirical ROC curves for FMM classification either using random effects
or ignoring random effects.
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Table 1: (Web Table) Comparison of FMM Classification Results with and without Random Effects

Methods Model Name AUC MisR Sens Spec
FMM GWFMM 0.816 0.270 0.669 0.812

GWFMM90 0.854 0.211 0.719 0.880
GWFMM90-NoRE 0.842 0.246 0.691 0.829

In Block RWFMM 0.850 0.231 0.705 0.846
RWFMM90 0.865 0.215 0.727 0.855
RWFMM90-NoRE 0.843 0.242 0.712 0.821

FMM GWFMM 0.802 0.273 0.612 0.863
GWFMM90 0.815 0.254 0.655 0.855
GWFMM90-NoRE 0.818 0.246 0.698 0.821

Out Block RWFMM 0.838 0.266 0.619 0.872
RWFMM90 0.830 0.242 0.705 0.829
RWFMM90-NoRE 0.814 0.266 0.698 0.786
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