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Abstract

Event-related potentials (ERPs) summarize electrophysiological brain response to specific stimuli. They

can be considered as correlated functions of time with both spatial correlation across electrodes and nested

correlations within subjects. Commonly used analytical methods for ERPs often focus on pre-determined

extracted components and/or ignore the correlation among electrodes or subjects, which can miss important

insights, and tend to be sensitive to outlying subjects, time points or electrodes. Motivated by ERP data

in a smoking cessation study, we introduce a Bayesian spatial functional regression framework that models

the entire ERPs as spatially correlated functional responses and the stimulus types as covariates. This novel

framework relies on mixed models to characterize the effects of stimuli while simultaneously accounting for

the multilevel correlation structure. The spatial correlation among the ERP profiles is captured through

basis-space Matérn assumptions that allow either separable or nonseparable spatial correlations over time.

We induce both adaptive regularization over time and spatial smoothness across electrodes via a correlated

normal-exponential-gamma (CNEG) prior on the fixed effect coefficient functions. Our proposed framework

includes both Gaussian models as well as robust models using heavier-tailed distributions to make the

regression automatically robust to outliers. We introduce predictive methods to select among Gaussian

vs. robust models and models with separable vs. non-separable spatiotemporal correlation structures. Our

proposed analysis produces global tests for stimuli effects across entire time (or time-frequency) and electrode

domains, plus multiplicity-adjusted pointwise inference based on experimentwise error rate or false discovery

rate to flag spatiotemporal (or spatio-temporal-frequency) regions that characterize stimuli differences, and

can also produce inference for any prespecified waveform components. Our analysis of the smoking cessation

ERP data set reveals numerous effects across different types of visual stimuli.
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1. Introduction1

Event-related potentials (ERPs) summarize electrophysiological brain responses to specific stimuli. They2

are generated by averaging electroencephalogram (EEG) segments recorded under repeated applications of3

a stimulus, with the averaging serving to reduce biological noise levels. ERPs represent temporal changes4

of electrical potential resulting from the firing of neurons in the brain, measured on a set of electrodes5

placed on the scalp. They have been widely used to assess brain cognition and information processing6

(Brandeis and Lehmann, 1986; Bressler, 2002). ERP studies produce for each electrode a waveform on7

a very fine temporal scale, which is sometimes represented using time-frequency representations such as8

spectrograms.9

In cognitive neuroscience, psychophysiology, and related fields, analytical approaches on ERPs primarily10

focus on ERP components—waveforms with positive or negative voltage deflections (e.g., peaks or valleys).11

For example, the first peak with a negative voltage deflection occurring about 100 milliseconds (ms) after12

the onset of a stimulus is called the N100 (or N1) component, and the positive deflection peak occurring near13

250–400 ms after the onset of a stimulus is called the P300 (or P3) component. These ERP components are14

often summarized by features such as the amplitude of the peak or the mean voltages in a time window. Based15

on these features, statistical analyses, such as analysis of variance (ANOVA) (Lamy et al., 2008; Lole et al.,16

2013), hypothesis testing (Cagy et al., 2006), regression (Itier et al., 2004; Vossen et al., 2011), classification17

(Venturini et al., 1992; Zhang et al., 2014), and clustering (Gonzalez-Rosa et al., 2011), are carried out to18

discover meaningful patterns.19

While meaningful results have been found using this approach, limiting analyses to extracted components20

can be problematic and result in loss of information or false discoveries. First, any results in the data not21

contained in the pre-chosen components will be lost. Second, it is challenging to capture these components,22

as they do not occur at precisely the same time for each trial or subject, and so their estimation can attenuate23

the effect if the optimal location is not chosen or can lead to inflated type I error if locations are chosen24

to maximize the stimulus-induced signal (Kappenman and Luck, 2016). Third, this approach is typically25

used while modeling electrodes independently, while they are clearly correlated with each other, and as we26

show in our simulations failure to model this correlation can result in a loss of efficiency in estimation and27

inference. Fourth, these approaches often fail to produce global tests across all electrodes or time points, or28

account for the inherent multiple testing issue raised by performing inference across multiple components,29

time points and/or electrodes; such problems are exacerbated if multiple electrodes are analyzed and only30

those with the largest stimuli effects presented.31

An alternative to this feature extraction approach is to analyze each electrode and time point (or time-32

frequency point) independently, which has been termed a mass univariate approach (MUA; Kiebel and Friston,33
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2004a). A notable work is the LIMO EEG package produced by Pernet et al. (2011) for two-level analysis.34

MUA is typically coupled with post-hoc smoothing of resulting t-statistics or p-values and adjustment for35

multiple testing via random field theory to control family-wise error rate (FWER). This approach can be36

effective, but by modeling electrodes, time points or time-frequency points independently, does not enable37

more global testing (Kiebel and Friston, 2004b) and can sacrifice efficiency relative to methods that account38

for these correlations.39

Functional data analysis (FDA; Ramsay and Silverman, 1997) treats functions as objects, and accounts40

for correlation and regularity within functional objects using basis function representations and penalization,41

which can yield increased efficiency and greater inferential possibilities over methods that do not capture42

the intrafunctional correlation. Various FDA approaches have been introduced for the analysis of ERP43

data, typically modeling the temporal waveforms as the functional objects, and using a functional mixed44

model (FMM) to regress the ERP on the stimulus while adjusting for other factors. Kiebel and Friston45

(2004b) present hierarchical regression approaches that model the temporal waveforms using wavelet basis46

functions, using independent models per electrode, and yielding pointwise inference in the time or time-47

frequency domain. Wang et al. (2009) present a FMM for ERP data, including stimulus, electrode, stimulus48

× electrode as fixed effect functions along with subject-specific random effect functions and independent49

and identically distributed (iid) residual errors. They represent these functional effects through B-splines,50

and use functional ANOVA to perform global inference of whether the stimulus has any effect or not. Their51

approach does not, however, provide pointwise inference for individual time points or adjust for multiple52

testing, assumes iid residual errors, and has been applied to models with only a few selected electrodes.53

Davidson (2009) applies a Gaussian FMM to ERP data to each electrode separately using wavelet bases54

to represent the functions using the Bayesian method introduced in Morris and Carroll (2006), obtaining55

pointwise inference in the time domain that adjusts for multiple testing using false discovery rate (FDR).56

None of these methods model inter-electrode correlation, include both global and local inference with options57

for multiple testing adjustment by both FWER and FDR, or perform robust regression that can adjust58

for potential outlying time points, frequencies, or electrodes. Hasenstab et al. (2017) present methods to59

decompose the total variability of ERP data for a given scalp region into subject-specific and electrode-60

within-subject components, as well a component across scalp regions if multiple scalp regions are modeled,61

using multi-level functional principal components (fPC) to empirically estimate basis functions at each level.62

These methods provide an interesting approach for capturing the key structure of ERP data, but do not63

present regression models incorporating stimuli effects or perform inference to identify differences across64

experimental conditions.65

In this paper, we present a Bayesian functional mixed model approach to model ERP data. This ap-66

proach can account for nonstationary inter-electrode correlation, induces smoothness across electrodes in67
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the regression surfaces, is potentially robust to outlying curves or regions, and provides both global and68

pointwise inference to detect stimuli effects. To our knowledge, no other existing method for ERP data has69

all of these characteristics. Our framework treats the time or time-frequency waveforms as functional objects70

that are spatially correlated with nearby electrodes, and regresses these functions on any specified covariates71

with regression surfaces that are smooth in both time and space (i.e. across electrodes). Our simulations72

show that accounting for this correlation when present leads to greater power for detecting stimulus-induced73

effects. Our proposed framework utilizes either Gaussian models or robust models with heavier-tailed dis-74

tributions when outliers are present, and can accommodate either separable or nonseparable inter-electrode75

spatial correlation parameterized by a Matérn structure. It yields fully Bayesian inference that can be used76

to perform a global test for stimulus effect across time or time-frequency and electrodes, and then localize any77

differences in the time or time-frequency and electrode domains, and if desired, can also test any prespecified78

waveform components that may be of interest, while adjusting for multiple testing using FWER or FDR cri-79

teria. The resulting continuous spatiotemporal effects help characterize EEG/ERP microstates—a sequence80

of quasi-stable spatial distributions (landscapes) connected by quick changes in landscapes (Lehmann et al.,81

2009; Milz et al., 2016). We present rigorous Bayesian model selection techniques to assess whether the82

Gaussian or robust model should be used, and whether the inter-electrode spatial correlation is needed and,83

if so, whether they should be separable or non-separable with time. The modeling framework we present can84

be considered to capture advantages of the existing modeling approaches—modeling the entire ERP data like85

MUA approaches, accounting for temporal correlation structure like the FDA methods, providing inference86

on prespecified time or time-frequency components like feature extraction approaches, while accounting for87

nonstationary inter-electrode correlation and achieve robustness to outliers.88

While presented in the context of ERP data, the methods we introduce are general and can be ap-89

plied to many other spatially correlated functional data sets, thus also contribute to the literature of func-90

tional regression. Functional regression has experienced rapid development in recent years (Morris, 2015).91

Comparing with existing methods, our proposed framework offers several unique features and advantages:92

(1) It simultaneously models fixed/random covariate effects and non-separable spatial correlation of the93

functions. In contrast, existing methods either only model complex spatiotemporal/multi-level correla-94

tion structures while not including the effects of covariates (Greven et al., 2010; Chen and Müller, 2012;95

Park and Staicu, 2015; Chen et al., 2017; Chen and Lynch, 2017; Hasenstab et al., 2017), or simply treat96

spatiotemporal information as covariates for fixed or random effects thus do not directly characterize cor-97

relations induced by spatial/temporal distances (Scheipl et al., 2015; Brockhaus et al., 2015; Scheipl et al.,98

2016). (2) It induces both adaptive regularization over time and spatial smoothness over electrodes in the99

functional regression coefficients, while most existing approaches either do not induce adaptive regulariza-100

tion (Staicu et al., 2010) or do not allow fixed effect functions to be spatially correlated (Morris and Carroll,101

4



2006; Baladandayuthapani et al., 2008; Davidson, 2009; Steen, 2010; Zhou et al., 2010). (3) It provides an102

option to perform robust functional regression that is insensitive to outliers, while in existing methods, only103

a few consider robust regression (Zhu et al., 2011; Brockhaus et al., 2015; Scheipl et al., 2016). (4) Addi-104

tionally, our Bayesian framework yields a rich set of inferential outputs including global or local tests for any105

transformation of model parameters, and adjusting for multiple testing using EWER or FDR criterion. It106

also includes model selection methods to determine Gaussian vs. robust models and models with separable107

vs. nonseparable spatiotemporal correlation structures.108

2. Materials and Methods109

2.1. The Smoking Cessation Study and the ERP Data110

The ERP data studied in this paper were collected from a sub-study of a randomized clinical trial on111

smoking cessation (Cinciripini et al., 2013). This sub-study measures neurological responses to emotional112

cues in smokers under four types of visual stimuli—cigarette, pleasant, unpleasant and neutral. Investigators113

aim to test for systematic differences across the stimuli types and characterize any differences spatially (across114

scalp regions) and temporally. One hypothesis is that in nicotine-addicted individuals, cigarette-related cues115

will elicit ERPs comparable to those observed in the presence of the positive emotional stimuli.116

EEG signals were recorded using a 129-electrode Geodesic Sensor Net (Geodesic EEG System 200; Elec-117

trical Geodesics Inc., Eugene, OR) during the presentation of pictures with pleasant, unpleasant, neutral,118

or cigarette-related content. Preprocessing of the EEG signals was then conducted; steps included high-119

pass and low-pass filtering, artifact removal, eye blink correction, as well as average re-referencing. More120

details can be found in Versace et al. (2011). The EEG signals were further segmented on the time inter-121

val [−100, 800] ms with one measurement point for every 4 ms. The time zero indicates the onset of the122

picture. To increase signal-to-noise ratio, the signals for each subject were averaged together across the123

24 replicate pictures for each stimulus type to produce ERP temporal waveforms. It would be possible124

to construct time-frequency representations from these data using spectrograms (Holan et al., 2010), mul-125

titapering (Maris and Oostenveld, 2007), or smooth localized complex exponential basis functions (SLEX;126

Ombao et al., 2002), but in this paper we focus on temporal waveforms. The preprocessing steps produce127

ERPs at S = 129 electrodes for each of the four stimulus types for each of the M = 180 subjects. The total128

number of ERP curves is 92, 880, and each curve contains measurements at T = 225 time points, resulting in129

a very large data set with > 20 million observations. In Figure 1(a), sample ERP waveforms from the first130

10 subjects are plotted as grey lines for 16 selected electrodes, and the colored lines are the sample average131

for each of the four stimulus types calculated across all subjects. Figure 1(b) shows the layout of all 129132

electrodes, partitioned into 11 cortical regions following Keil et al. (2002).133

A special characteristic of ERP signals is the correlation induced by spatial locations of the electrodes.134

Figure 1(c) plots the correlation between pairs of electrodes (in the left central (R5) and the occipital135
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Figure 1: ERP plots: (a) ERP curves at 16 electrodes for 10 subjects. Colored curves are sample averages for the four
stimuli. (b) Partition of the 129 sites into 11 regions: anterior frontal left/right (R1/R2), frontal left/right (R3/R4), central
left/right(R5/R6), temporal left/right (R7/R8), parietal left/right (R9/R10) and occipital (R11). (c) Pairwise correlations
between electrodes for region 5 (red) and 11 (blue). Each dot represents the Pearson correlation between one pair of electrodes
calculated by pooling ERP measurement points across all subjects, stimulus types, and time grids. The lines are smoothed fits
using local polynomial kernels.

(R11) cortical regions) as a function of the electrode distances. Figure 1(c) clearly demonstrates that the136

correlations decay with electrode distances. We aim to capture this spatial correlation structure in our137

modeling, which, as we will show by simulation, leads to greater sensitivity and specificity for detecting138

significant stimuli effects in location and time over methods ignoring this spatial correlation.139

2.2. Functional Regression with Spatial Correlation140

While the methods we introduce are general, here we present the proposed models in the context of141

ERP data reviewed in Section 2.1. This data set contains functional data with a complex inter-functional142

correlation structure that has both hierarchical and spatial elements. Suppose that there are M subjects,143

A stimulus types, and S electrodes. For each electrode, there are L = M × A ERPs. Let Yis(t) represent144

the ith ERP for electrode s, where i = 1, . . . ,L, s = 1, . . . , S, and t = t1, . . . , tT . Let Xia = 1 if ERP i is145

from stimulus type a, and 0 otherwise; let Zim = 1 if the ith ERP is from subject m, and 0 otherwise. The146

general functional response regression model we are interested in fitting is:147

Yis(t) =
A∑

a=1

XiaBas(t) +
M∑

m=1

ZimUm(t) + Eis(t), t ∈ T , (1)

where T is a closed interval on the real line, Bas(t) represents the effect of stimulus type a at electrode s,148

Um(t) is a mean-zero random effect function capturing the subject-level variability, and Eis(t) is a mean-149

zero residual error function capturing the variability at the lowest level (i.e., electrode-level) of the hierarchy.150
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If modeling time-frequency representations instead of temporal waveforms, each functional quantity would151

simply be written as a function of both time and frequency. Our ultimate goal is to test for differences in152

|Bas(t)−Ba′s(t)|, a 6= a′, determine which regions of the scalp location s and time t are significantly different,153

and if desired, assess any prespecified waveform components.154

This model resembles other functional mixed models (FMMs) in the literature (Guo, 2002; Morris and Carroll,155

2006; Zhu et al., 2011). However, in order to adequately capture the structure of ERPs, our model needs156

to regularize the fixed effect functions {Bas(t)} over both time t and electrode s, plus account for spatial157

correlations in the residual errors {Eis(t)} that may necessarily be nonstationary, i.e. vary over t. Also,158

ERP data frequently contain outliers, which can be outlying subjects, electrodes, or time points, and these159

outliers can strongly impact the functional regression results. Existing robust FMMs (Zhu et al., 2011) can-160

not accommodate any spatial interfunctional correlation in the fixed effect or the residual. Our proposed161

framework incorporates robust models that successfully accommodate these spatial correlations.162

While model (1) is perhaps more intuitive, for the remainder of this paper we will work with a vectorized163

version of this model. By stacking the functions in model (1), we define Y (t) = (Y11(t), . . . , Y1S(t), . . . , YL1(t), . . . , YLS(t))
T ,164

B(t) = (B11(t), . . . , B1S(t), . . . , BA1(t), . . . , BAS(t))
T , U(t) = (U1(t), . . . , UM (t))T , andE(t) = (E11(t), . . . , E1S(t),165

. . . , EL1(t), . . . , ELS(t))
T . Model (1) can then be rewritten in vector form:166

Y(t) = XB(t) + ZU(t) +E(t), t ∈ T . (2)

Denote by N = LS the total number of ERPs measured and denote by p = AS the total number of channel-167

specific fixed effects; then X in (2) is a N × p and Z is a N ×M matrix, both containing only a single “1”168

in each row.169

Basis-Transform Modeling Approach For efficient model fitting, we adopt a basis-transform modeling170

approach that involves representing the functions with a lossless or near-lossless basis representation, mod-171

eling in the dual space of basis coefficients, and then projecting the results back to the original data space172

for inference. Given a set of basis functions ψk(t), k = 1, . . . ,K, we use a truncated basis representation173

Yis(t) =

K∑

k=1

Y ∗

iskψk(t) (3)

This transform is said to be lossless if Yis(t) ≡
∑

k Y
∗

iskψk(t) for all observed t, so that the basis coefficients174

{Y ∗

isk; k = 1, . . . ,K} contain all information within the observed functional data {Yis(t); t = t1, . . . , tT },175

which is the case for example with a wavelet transform. It is said to be near-lossless if176

∥∥∥∥∥Yis(t)−
K∑

k=1

Y ∗

iskψk(t)

∥∥∥∥∥ < ǫ ∀i = 1, . . . , N and s = 1, . . . , S (4)

for some small value ǫ and measure ‖•‖, which can be the case with a truncated wavelet representation177
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given enough basis functions. Near-losslessness may be sufficient for modeling as this condition assures178

that the chosen basis is sufficiently rich such that for practical purposes it can recapitulate the observed179

functional data, and visual inspection of the raw functions and basis transformation should reveal virtually180

no difference.181

Any basis functions can be used, including commonly used splines, wavelets, Fourier bases, eigenfunctions182

or creatively constructed custom bases, and can be defined on multi-dimensional or non-Euclidean domains.183

If modeling time-frequency representations, 2D basis functions such as 2D wavelets (Martinez et al., 2013),184

2D eigenfunctions (Chen and Jiang, 2017), or SLEX bases (Ombao et al., 2002) could be used. For the185

temporal ERP waveforms, in this paper we use wavelet bases, as has commonly been done in other papers186

in ERP literature (Kiebel and Friston, 2004b; Davidson, 2009).187

Given a wavelet basis with mother wavelets {ψjk; j = 1, . . . , J ; k = 1, . . . ,Kj} and father wavelets188

{ψ0k; k = 1, . . . ,K0}, we expand Y (t), an element of Y(t), by Y (t) =
∑J

j=0

∑Kj

k=1 djkψjk(t). Here, {djk}189

are the wavelet coefficients that describe features of the ERP at scales indexed by j and locations indexed190

by k. For data on an equally spaced grid, this representation is lossless if all basis coefficients are retained,191

providing an exact representation of the original data. Model (2) can then be transferred to the dual space192

of wavelet coefficients:193

D = XB∗ + ZU∗ +E∗, (5)

where rows of D,B∗,U∗ and E∗ contain wavelet coefficients of entries in Y(t),B(t),U(t) and E(t) respec-194

tively, and columns are basis coefficients indexed by (j, k). We propose spatially correlated shrinkage priors195

for B∗ in Section 2.2.2 that lead to adaptive regularization in t and spatial smoothness over s, and propose196

distributional assumptions for E∗ and U∗ for Gaussian models in Section 2.2.1 and robust models in Section197

2.2.3 to accommodate the spatial correlation across electrodes and the correlation induced by the nested198

data structure.199

2.2.1. Gaussian Functional Mixed Models with Spatial Correlation200

We will capture the spatial correlation across electrodes through the residual term E(t). Suppose that201

the N functions in E(t) can be partitioned into L independent sets of correlated blocks, each of size Sl.202

For example, in the ERP data, E(t) contains N = M × A × S elements. These elements can be par-203

titioned into L = M × A independent blocks, each corresponding to one subject-stimulus combination;204

and the size of each block is Sl ≡ S. One can order components in E(t) into the L blocks to obtain205

E(t) = (E11(t), . . . , E1S1
(t), . . . , EL1(t), . . . , ELSL

(t))T . We will model spatial functional correlation by as-206

suming parametric covariance structures for the basis space residuals E∗, which induces a flexible class of207

nonstationary correlations back in the data space.208

Specifically, we assume a separate Gaussian distribution per basis coefficient (column of E∗), i.e., E∗

jk ∼209
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N(0, sjkRjk) independently across (j, k), where sjk is a scale parameter with an inverse-gamma prior and210

Rjk is an N × N block-diagonal correlation matrix given by IMA ⊗ Rjk where IMA is an identify ma-211

trix of size M × A and Rjk is an S × S correlation matrix determined by the correlation parameter ρjk.212

With a slight abuse of notation, we denote by Rjk(s, s
′) the correlation between electrodes s and s′. By213

allowing the correlation parameter to vary over basis coefficients (j, k), this leads to a nonseparable correla-214

tion structure back in the data space, with corr(Eis(t), Eis′ (t
′)) =

∑
j,k ψjk(t)Rjk(s, s

′)ψjk(t
′). In contrast,215

if one assumes that ρjk ≡ ρ for all (j, k), we obtain a correlation structure with corr(Eis(t), Eis′ (t
′)) =216

R(s, s′)
∑

j,k ψjk(t)ψjk(t
′), which we refer to as a separable structure. Note that both types of correlation217

structures induce nonstationary processes in the data space as the spatial correlation varies with time t in both218

cases. There are numerous options for the correlation structure Rjk or R (Stein, 1999). Here, to induce spa-219

tial correlation across electrode locations on the scalp, we consider the Matérn structure—a common choice220

for point-referenced spatial data. In particular, we follow the parameterization of Baladandayuthapani et al.221

(2008) and Zhou et al. (2010), which assumes the following isotropic correlation structure:222

Rjk(s, s
′;ρjk) = 21−vjk

(
2 d(s, s′) v

1/2
jk /αjk

)vjk
Kvjk

(
2 d(s, s′) v

1/2
jk /αjk

)
/Γ(vjk), d(s, s′) > 0, (6)

where ρjk = (αjk, vjk) > 0, d(·, ·) measures the distance (on the scalp surface) between two electrodes223

for ERPs, and Kvjk(·) is the modified Bessel function of the second kind with order vjk. The parameter224

αjk controls the rate of decay when x increases, and vjk controls the shape of the correlation function225

when x is small. Following Baladandayuthapani et al. (2008), we assume uniform priors for the elements226

of ρjk, i.e., αjk ∼ Unif(0, Cα), vjk ∼ Unif(0, Cv) for constants Cα and Cv, and assume that αjk, vjk are227

mutually independent. The values of Cα and Cv are determined so that all combinations of (α, v) result in228

positive-definite correlation matrices given the electrode distances and the correlation structure in (6). Under229

this parameterization, ρjk or ρ can be updated through a Metropolis-Hastings step; see the supplementary230

materials for details.231

Nested Correlation for ERPs from the Same Subject Besides the spatial correlation across electrodes,232

there is an additional layer of interfunctional correlation induced by the fact that we obtain separate ERPs for233

each subject from each stimuli. We accommodate this nested correlation through the random effect function234

of (2). Let Um(t) denote the mth entry of U(t). Assume that Um(t) is a Gaussian process with mean 0 and235

covariance kernel Q(·, ·) independently across m; then U∗
m, the mth row of U∗ in the dual space model (5),236

satisfies U∗
m ∼ N(0,Q∗) independently across m. Taking advantage of the whitening property of wavelet237

transforms, we make a simplified independence assumption between wavelet coefficients in U∗
m following238

Morris and Carroll (2006), which gives Q∗ = diag({q∗jk}), inducing nonstationary covariance assumptions in239

the original functional space with cov{Um(t), Um(t′)} = Q(t, t′) =
∑

j,k ψjk(t)Q
∗

jkψjk(t
′).240

We use Gfmmc to represent Gaussian FMMs specified above, with Gfmmcρ representing a model with241
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separable correlation in the residual errors and Gfmmcρjk
representing that with nonseparable correlation.242

While presented using the Matérn covariance, the Gfmmc models we introduce here can accommodate any243

interfunctional covariance structure in like manner. We will present regularization priors for B∗ in Section244

2.2.2, which will be incorporated in both Gfmmc and the robust models described in Section 2.2.3.245

2.2.2. Spatially Correlated Shrinkage Priors for Fixed Effects246

As noted in model (1), our approach allows stimuli effects to vary across both electrodes and time, and247

we expect our estimates to be regularized in both of these dimensions. We will accomplish both adaptive248

regularization over t and spatial smoothness across s using a correlated Normal-Exponential-Gamma (CNEG)249

prior for the basis space fixed effects. To our knowledge, this is the first use of such a correlated scale mixture250

prior to simultaneously smooth spatially-varying fixed effect functions.251

More specifically, Let B∗

jk denote the (j, k)th column of B∗. We assume that B∗

jk = Γb∗

jk, where Γ252

is a lower triangular matrix obtained from the Cholesky decomposition of a prior correlation matrix RB,253

i.e., RB = ΓΓT . We assume that entries of b∗

jk are a priori independent, and each follows a Normal-254

Exponential-Gamma distribution with parameters aBjk and bBjk. We call the resulting prior for B∗

jk the255

CNEG prior following Griffin and Brown (2012), and write B∗

jk ∼ CNEG(Γ, aBjk, b
B
jk). Technical details and256

discussions are available in Section 3 of supplementary materials. The CNEG prior encourages smoothness257

(spatial correlation) in each fixed effect B∗

jk across nearby electrodes. As a sparse prior in the wavelet258

space, it also induces adaptive regularization over t in data domain, i.e., it tends to retain large values of259

B(t) with minimal attenuation while shrinking very small values of B(t) towards zero to encourage sparsity260

(Morris and Carroll, 2006).261

2.2.3. Robust Functional Mixed Models with Spatial Correlation262

The Gaussian assumptions underlying the Gfmmc make the method described above sensitive to outliers,263

while it would be desirable for our method to be insensitive to outlying subjects, time points, or electrodes264

that can sometimes occur in practice. We now present robust functional mixed models for correlated functional265

data (Rfmmc). Denote the (j, k)th column of the wavelet domain model (5) by djk = XB∗

jk + ZU∗

jk +E∗

jk,266

and let U∗

jk = {U∗

mjk}
M
m=1 and E∗

jk = {E∗

ijk}
N
i=1. We use an CNEG prior for B∗

jk as above, and specify267

the random effect distribution using the scale mixtures of normals following Zhu et al. (2011): U∗

mjk ∼268

N(0, φmjk), φmjk ∼ Exp((νUjk)
2/2), (νUjk)

2 ∼ Gamma(aU , bU ), where {φmjk} are mutually independent269

scaling parameters with exponential mixing distributions, and νUjk are mutually independent population scale270

parameters. The above formulation is equivalent to setting double exponential (DE) distributions for random271

effects and residuals, which has the effect of accommodating heavier-tailed behavior (non-Gaussianity) of272

the data and downweighting the effect of outlying curves or regions.273

To incorporate inter-electrode spatial correlation, we further assume that E∗

jk follows a scale-mixture-of-274
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normal setup with a block-diagonal correlation structure, i.e.,275

E∗

jk ∼ N(0,Σjk), Σjk = diag {λljk ; l = 1, . . . ,L} ⊗Rjk,

λljk ∼ Exp((νEjk)
2/2), (νEjk)

2 ∼ Gamma(aE , bE),

where Rjk is the within-block correlation matrix and λjk = {λ1jk, . . . , λLjk} contains independent scaling276

parameters. Under this setup, we can write the joint conditional density of λjk and ρjk, as shown in Equation277

(1) in supplementary materials. Based on these results, we find that the conditional distribution of each λljk278

is a generalized-inverse-Gaussian (GIG) distribution (Jørgensen, 1982).279

The structure of Rjk can be parameterized following the same Matérn structure as in (6). Alternative280

correlation structures to the Matérn can be adopted without difficulty. A separable correlation structure281

is induced if one specifies ρ to be constant across all (j, k). When the ρ parameters depend on (j, k), the282

corresponding Rfmmc model is denoted by Rfmmcρjk
, and when ρ is common across (j, k), the model is283

denoted by Rfmmcρ.284

2.3. Posterior Analysis285

We estimate parameters of the proposed models through posterior sampling using Markov chain Monte286

Carlo (MCMC) algorithms. Details are provided in the supplementary materials. Each posterior sample287

of B∗ and U∗ can be transformed back into the data space using the inverse wavelet transform, yielding288

posterior samples for B(t) and U(t) in the data space model (2) on a dense grid T . The posterior samples289

can also be computed for any function of the parameters, including the contrast effects between two stimuli290

and the averaged effect on a specific region, for example prespecified waveform components. Based on these291

samples, various inferential goals can be achieved.292

2.3.1. Identify Significant Spatiotemporal Regions293

A key inferential objective in the ERP data analysis is to identify spatial and temporal locations cor-294

responding to electrophysiological effects that are different across different stimuli. This can be done by295

first calculating the contrast effects for a pair of stimuli. For example, denote by B
(g)
CIG,s(t), B

(g)
NEU,s(t)296

the gth sample for the fixed effects at electrode s for the cigarette stimulus (CIG) and neutral stimu-297

lus (NEU) respectively. Then the contrast effect between CIG and NEU at electrode s can be calcu-298

lated by C
(g)
CIG−NEU,s(t) = B

(g)
CIG,s(t) − B

(g)
NEU,s(t). We can then identify the significant regions using299

{C
(g)
CIG−NEU,s(t)}. Most existing methods in the literature focus on the use of pointwise credible band300

for such questions, flagging any position t with a credible band that does not include zero. However, as301

emphasized in Crainiceanu et al. (2012), pointwise credible bands do not have joint coverage probabilities,302

and inference based on them does not adjust for family-wise/experimental-wise error rate (FWER/EWER)303

in the inherent multiple testing problem and thus is likely to result in high false discovery rates. Hence, we304
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propose two methods for flagging regions with global coverage properties: thresholding methods based on305

the simultaneous band scores (SimBaS) and the Bayesian false discovery rate (BFDR).306

• Simultaneous Band Scores (SimBaS). The SimBaS are used to test whether a location of a contrast307

effect C(s, t) = Cs(t) is significantly nonzero while controlling the EWER across s = 1, . . . , S and t ∈ T .308

To calculate SimBaS, we first generate simultaneous credible bands (SCBs) following Ruppert et al. (2003),309

i.e., [Ĉ(s, t)−mα ŝd{C(s, t)}, Ĉ(s, t) +mα ŝd{C(s, t)}], where Ĉ(s, t) is the sample mean, ŝd{C(s, t)} is the310

sample standard deviation, and mα is the (1−α) sample quantile of maxs,t
{
|C(g)(s, t)− Ĉ(s, t)|/ŝd{C(s, t)}

}
,311

g = 1, . . . , H. We then compute SimBaS by inverting the SCB procedure. Specifically, we calculate the SCB312

for a range of α values, and define the SimBaS at each (s, t) as the smallest α for which the 100(1 − α)%313

SCB exclude zero at (s, t). This measure was first introduced in Meyer et al. (2015). Based on SimBaS,314

we can compute a global Bayesian p-value (GBPV) as min(s,t){SimBaS(s, t)}, which can be used to test315

the global functional null hypothesis that C(s, t) ≡ 0. If GBPV< α, we can conclude that there is some316

difference between stimuli types, and can subsequently localize these effects by flagging locations (s, t) as317

strongly significant if the corresponding SimBaS(s, t) is less than α.318

• Bayesian False Discovery Rate (BFDR). At times, we are interested in identifying locations at319

which the magnitude of the contrast effect C(s, t) is greater than some prespecified practical effect size δ.320

To do this, we first calculate the point-wise posterior probability p̂(s, t) ≈ Pr(|Cs(t)| > δ|Data) from the321

posterior samples. The values 1− p̂(s, t) can be interpreted as an estimate of the local FDR at location (s, t),322

if we consider a discovery to be a location where the effect is in fact greater than δ in magnitude. We then323

find a threshold φα for p̂(s, t), for example corresponding to a prespecified expected FDR (averaged across324

all s and t) of α, and flag locations with p̂(s, t) > φα as being significantly greater than δ. This strategy was325

introduced in the functional regression context by Morris et al. (2008). Further details are available in the326

supplementary materials.327

Comparing the two methods, we see that the BFDR method uses the weaker FDR criterion but re-328

quires the pre-specification of a threshold δ, whereas the SimBaS analysis corresponds to FWER/EWER329

considerations but does not require specification of δ.330

2.3.2. Model Selection via Posterior Predictive Likelihoods331

We have proposed multiple spatial functional regression models, and it is natural to wonder for a given332

data set which model is ideal. We introduce a model selection approach using a training-validation strategy.333

For our ERP data, we first randomly split the 180 subjects into a training set (containing 140 sub-334

jects) and a validation set (containing 40 subjects). We then fit various models to the training data and335

calculate the posterior predictive likelihood of the validation data using posterior samples obtained from336

the training procedure. Let θ denote all model parameters. Let Ds,Xs denote the data from a new337

subject in the validation set, and let M denote the model under consideration, then the posterior predic-338
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tive likelihood for the new subject can be approximated by Monte Carlo integration f(Ds|M,D,X,Z) =339

∫
f(Ds|Xs, θ)f(θ|D,X,Z,M)dθ ≈ 1/H

∑H
g=1 f(D

s|Xs, θ(g)), where {θ(g), g = 1, . . . , H} are posterior sam-340

ples of θ. Since larger posterior predictive likelihood indicates a better model fit to the validation data, to341

compare multiple models, it is sufficient to directly compare the log posterior predictive likelihood (LPPL).342

Notice that when computing the likelihood for new subjects, one needs to integrate out the random effects.343

We describe details in supplementary materials.344

2.3.3. An Automated Workflow for Multiple-Inferential Tasks345

Figure 2 presents a workflow that can serve as an automated pipeline for rigorously modeling this rich346

data. We first fit multiple models for each cortical region using the training set, then calculate LPPLs for the347

validation set and use them to select the best model for each region. The reasons for model fitting by cortical348

regions will be explained in Section 3.2. We then re-fit the best model to the full ERP data at each region349

and combine the posterior samples of the electrode-specific fixed effects from all regions. In order to present350

results continuously on the surface of the scalp, we interpolate fixed effects across all electrodes on the scalp351

and generate inferential summaries over a dense spatiotemporal domain. If time-frequency representations352

are modeled, these summaries will be over a dense grid on the 3D space-time-frequency domain. In case that353

inference on any desired prespecified waveform components (e.g. N100, P300, etc.) are desired, inferential354

summaries can be computed by selecting the corresponding peak locations or integrating over regions of t,355

which can be represented on the spatial scalp space.356

Figure 2: The suggested workflow for posterior inference in ERP data analysis. LPPL: log posterior predictive likelihood;
SimBaS: Simultaneous Band Score; BFDR: Bayesian False Discovery Rate; GBPV: global Bayesian p-value.

3. Results357

3.1. Simulation Study358

We designed a simulation study to assess the performance of the proposed models. Data were simu-359

lated to resemble real ERP data. Our comparisons involve six models. Two are based on existing FMMs360
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that do not consider spatial correlations in either B(t) or U(t), including the Gaussian FMM (Gfmm) of361

Morris and Carroll (2006) and the Robust FMM (Rfmm) of Zhu et al. (2011). Four are spatial functional362

regression models proposed in this paper, including Gfmmc (Gfmmcρjk
, Gfmmcρ) and Rfmmc (Rfmmcρjk

,363

Rfmmcρ) models. For all models, we consider electrode-specific (i.e., spatially varying) fixed effects with a364

binary design matrix X = (X11, . . . ,X1S , . . . ,XA1, . . . ,XAS), where S is the number of electrodes and A365

is the number of stimuli. For example, (Xas)i = 1 indicates that the ith ERP curve belongs to the ath366

stimulus and the sth electrode.367

To resemble the characteristics of real ERPs, we simulated data using the ERP curves from region R11368

as the reference data. Specifically, we first fit the four proposed models (Gfmmcρjk
, Gfmmcρ, Rfmmcρjk

369

and Rfmmcρ) to the ERPs from region R11. From the fitted models, we obtained the estimated values of370

B∗ as well as the variance parameters for the random effect and residuals. We then treated these estimates371

as the true underlying parameters and simulated four data sets. The resulting data sets resemble real372

ERPs with different data distributions and spatial correlation structures. Each data set was generated373

based on one of the four models, which gives us the ground truth so that we can assess whether our model374

selection procedure can correctly select the true model, and evaluate the potential loss of efficiency if models375

are misspecified. In the supplementary materials, we plotted some simulated ERPs together with the true376

ERPs, which demonstrates that this simulation strategy has yielded ERPs with the functional characteristics377

of real ERP data. We denote the simulated data sets as Gρjk
, Gρ, DEρjk

, DEρjk
, corresponding to the four378

proposed models. Here G indicates data with Gaussian random effect and residuals, DE indicates data with379

DE distributions for the random effect and residuals, and the subscripts ρjk or ρ specify the interfunctional380

correlation structures.381

Each simulated data set contains 5760 ERP curves from M = 80 subjects, with each subject having 72382

curves from S = 18 electrodes and A = 4 stimuli types. To reduce the computing time, we downsampled383

the time grid from 225 to 75 time points per curve. To assess the performance of the LPPL-based model384

selection procedure, another four validation sets were generated in the same way, with 20 subjects in each385

set. The above simulation was repeated five times, and results were evaluated using the following criteria.386

Evaluation Criteria. We applied the six models to each simulated data set and calculated six summary387

statistics to evaluate the estimation performance. They included388

IMSE =
1

AS

A∑

a=1

S∑

s=1

||B̂as(t)−Bas(t)||
2

||Bas(t)||2
, IPVar =

1

AS

A∑

a=1

S∑

s=1

1
H

∑H
g=1 ||B

(g)
as (t)− B̂as(t)||

2

||Bas(t)||2
,

IWidth= 1/(AS)
∑A

a=1

∑S
s=1 ||ŵBas

(t)||2/||Bas(t)||
2, the coverage probability of the SCB for B(t) (CPrB95),389

as well as the MSE =
∑

jk(α̂jk −αjk)
2/

∑
jk α

2
jk and PVar = 1

H

∑H
g=1

∑
jk(α

(g)
jk − α̂jk)

2/
∑

jk α
2
jk for α and390

v in the Matérn correlation. In the above formulae, the hat symbol denotes the posterior mean, || · || denotes391
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the L2 norm, H denotes the number of posterior samples, and ŵBas
(t) denotes the width of the 95% point-392

wise credible band of Bas(t). Here, IMSE and MSE summarize the deviation of the posterior mean about393

the truth; IPVar and PVar summarize the variability about the posterior mean.394

To further assess the performance of BFDR and SimBaS in terms of flagging the regions with differential395

electrophysiological effects across stimuli, we defined two statistics—the thresholded false discovery rate396

(FDRǫ) and sensitivity (SENξ). The FDRǫ is defined as the number of flagged locations with true value397

less than or equal to ǫ divided by the total number of flagged locations; the SENξ is defined as the number398

of flagged locations with true value greater than ξ divided by the total number of locations with true value399

greater than ξ. These statistics are defined in order to evaluate the performance of the methods for flagging400

significant locations in the setting of absolutely continuous parameters. Besides FDRǫ and SENξ, we defined401

the false negative rate (FNRξ) and specificity (SPECǫ) in a similar fashion; details are available in the402

supplementary materials. Finally, we evaluated the model selection procedure by computing LPPL based403

on the validation data.404

Simulation Results All six models were applied to each simulated data set. Intuitive visualizations of405

the estimated effects and the ground truth are provided as a scalp plot and a movie file in supplementary406

materials. The summary statistics were averaged across all five replications and listed in Table 1. Results407

from the “matched” model (the correct model) are highlighted using boldface. From Table 1, we see that408

Gfmm and Rfmm had larger IMSE and lower coverage rates than all the Gfmmc and Rfmmc models. This409

implies that when spatial correlation was present, ignoring such correlation results in larger estimation errors410

and less reliable inferential summaries. For the posterior variance, Gfmm and Rfmm had smaller IPVar and411

narrower IWidth than the Gfmmc and Rfmmc models, especially for data with Gaussian tails (Gρjk
, Gρ).412

This pattern reflects the fact that treating correlated data as independent can cause overestimation of the413

effective sample size, which leads to underestimated posterior variances (Sainani, 2010). Comparing the four414

models that take into account spatial correlations, for data with DE tails (DEρjk
, DEρ), the Rfmmc models415

achieved systematically lower IMSE, smaller IPVar and narrower IWidth than the Gfmmc models. For data416

with Gaussian tails, Rfmmc models still achieved IMSEs comparable to those of the Gfmmc models, and the417

results on IPVar, IWidth and CPrB95 are also comparable with the results from the Gfmmc models. These418

patterns indicate that for data with heavier (than Gaussian) tails, the robust models help reduce estimation419

error and improve estimation accuracy. If data have Gaussian tails, robust models do not trade off too much420

estimation or inferential performance relative to Gaussian models. These benefits of robust models have also421

been investigated by Zhu et al. (2011). The statistics for U(t) show similar patterns to those observed for422

B(t), and results are available in the supplementary materials.423

We applied both BFDR (δ = 0.6) and SimBaS on contract effects to detect spatiotemporal regions424

corresponding to differential electrophysiological effects across stimuli while controlling the overall FDR or425
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Table 1: Summary statistics of simulation study: integrated mean squared error (IMSE), integrated posterior variance (IPVar), integrated width of 95% credible
interval (IWidth), and coverage probability of the 95% SCB (CPrB95) of B(t); the averaged mean squared error (MSE) and the averaged posterior variance (PVar) of
the Matérn parameters α and v; the FDR.3 and SEN1.25 calculated for regions flagged using BFDR (δ = 0.6) and SimBaS approaches; the log posterior predictive
likelihood (LPPL) of validation data sets; and the running time (based on 4000 MCMC iterations).

B(t) α v BFDR (δ = .6) SimBaS LPPL Time

Data Model IMSE IPVar IWidth CPrB95 MSE PVar MSE PVar FDR.3 SEN1.25 FDR.3 SEN1.25 (×104) (hrs)

Gfmm 0.465 0.045 0.675 0.751 – – – – 0.021 0.871 0.019 0.779 -10.545 2.030

Rfmm 0.539 0.043 0.646 0.706 – – – – 0.054 0.805 0.066 0.677 -22.215 3.702

Gρjk
Gfmmcρjk

0.143 0.076 1.170 0.967 0.006 0.005 0.002 3.3e-4 0.012 0.965 0.035 0.812 -4.662 3.394

Gfmmcρ 0.141 0.092 1.420 0.974 0.053 5.4e-5 0.050 4.0e-6 0.010 0.877 0.058 0.689 -4.713 2.123

Rfmmcρjk
0.151 0.073 1.120 0.965 0.110 0.011 0.004 3.2e-4 0.013 0.938 0.035 0.787 -5.220 7.191

Rfmmcρ 0.151 0.093 1.437 0.973 0.078 1.1e-4 0.051 3.9e-6 0.008 0.822 0.055 0.533 -5.265 5.561

Gfmm 0.507 0.064 0.949 0.793 – – – – 0.037 0.709 0.067 0.510 -10.681 2.357

Rfmm 0.553 0.060 0.901 0.753 – – – – 0.093 0.752 0.123 0.609 -22.295 3.681

Gfmmcρjk
0.140 0.093 1.424 0.982 0.005 0.005 0.002 3.2e-4 0.029 0.809 0.117 0.670 -4.733 3.445

Gρ Gfmmcρ 0.142 0.092 1.421 0.981 1.9e-4 5.3e-5 2.6e-5 3.5e-6 0.027 0.808 0.096 0.665 -4.730 2.157

Rfmmcρjk
0.139 0.093 1.431 0.983 0.140 0.012 0.003 3.1e-4 0.026 0.807 0.079 0.624 -5.244 7.225

Rfmmcρ 0.139 0.100 1.528 0.985 0.029 1.5e-4 5.4e-4 4.8e-6 0.024 0.805 0.066 0.590 -5.309 5.614

Gfmm 0.581 0.071 1.069 0.794 – – – – 0.036 0.957 0.012 0.646 -13.158 2.362

Rfmm 0.566 0.045 0.677 0.707 – – – – 0.004 1.000 0.037 0.967 -26.423 3.708

Gfmmcρjk
0.208 0.121 1.861 0.984 0.013 0.005 0.003 1.6e-4 0.020 0.981 0.002 0.785 -4.704 3.432

DEρjk
Gfmmcρ 0.221 0.175 2.692 0.993 0.053 3.6e-5 0.044 1.4e-6 0.002 0.794 0.025 0.539 -4.774 2.171

Rfmmcρjk
0.112 0.063 0.969 0.981 0.053 0.005 0.001 1.6e-4 0.001 1.000 0.003 1.000 -3.451 7.206

Rfmmcρ 0.123 0.092 1.406 0.989 0.074 7.7e-5 0.045 1.5e-6 0.000 1.000 0.005 0.954 -3.531 5.596

Gfmm 0.685 0.117 1.761 0.853 – – – – 0.129 0.710 0.010 0.485 -13.403 2.643

Rfmm 0.703 0.077 1.147 0.770 – – – – 0.039 0.944 0.010 0.697 -26.398 3.650

DEρ Gfmmcρjk
0.265 0.183 2.822 0.982 0.009 0.005 0.002 1.6e-4 0.066 0.745 0.011 0.571 -4.850 3.391

Gfmmcρ 0.268 0.183 2.810 0.982 1.0e-4 8.7e-5 3.7e-5 2.5e-6 0.057 0.760 0.009 0.556 -4.847 2.173

Rfmmcρjk
0.107 0.088 1.348 0.985 0.057 0.006 0.002 1.5e-4 0.015 1.000 0.005 0.939 -3.508 7.237

Rfmmcρ 0.107 0.092 1.421 0.987 0.019 9.7e-05 3.6e-4 2.3e-6 0.018 1.000 0.004 0.924 -3.584 5.507

1
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the FWER across all 18 electrodes and time points to be less than α = 0.05. Results are assessed using the426

thresholded statistics FDR.3 and SEN1.25. These statistics are averaged across all six contrast effects and427

the five repeated simulations, and are listed in Table 1. From Table 1, we see that for data with heavier tails428

(DEρjk
and DEρ), the three robust models (Rfmm, Rfmmcρjk

, Rfmmcρ) tend to show higher SEN1.25 than429

their non-robust counterparts, and the two Rfmmc models always achieve higher SEN1.25 than Rfmm. For430

data with Gaussian tails, the two Gfmmc models achieve higher SEN1.25 than their Rfmmc counterparts.431

We also observe that the SimBaS approach gives systematically lower SEN1.25 than the BFDR approach.432

This is not a surprise since FWER/EWER based approaches (e.g., SimBaS) are more conservative than433

FDR based approaches, hence tend to miss more discoveries. The results on FDR.3 in Table 1 show that for434

data with heavier tails, the Rfmmc models tend to give lower FDRs than the other methods. For data with435

Gaussian tails, the Rfmmc models provide comparable, sometimes even lower, FDRs than their Gaussian436

counterparts. Additional statistics on FNRξ and SPECǫ are available in the supplementary materials.437

In Table 1, we also list the averaged LPPL. The results show that for all four simulated data sets, the438

correct models almost always achieved the maximum LPPL among the six models. An exception is the DEρ439

data, in which case although the data truly have separable correlation structure, the non-separable model440

Rfmmcρjk
still gives a slightly higher LPPL. This suggests the robustness of non-separable models—we have441

little loss of efficiency when using the more flexible model even if data are generated from the simpler model.442

Therefore, it might be a reasonable strategy to use non-separable models by default. In addition to LPPL, in443

Table 1 we list the running time of each method, which shows that the robust methods cost roughly twice as444

much computational time than their Gaussian counterparts, and the models with non-separable correlation445

structures run slower than those with separable structures.446

3.2. Application: Analysis of Smoking Cessation ERP Data447

Recall that our goal in analyzing the ERP data is to characterize the differential neurological response of448

smokers across different visual stimuli spatially and temporally. While our proposed framework is suitable449

to include all electrodes, we choose to fit separate models for each of the 11 cortical regions for three reasons:450

(1) By using LPPL-based model selection, we observed that different models fit the data better for different451

regions. (2) The spatial correlation between electrodes appears to vary across scalp regions; see Figure452

1(c) as well as Figure 13 in supplementary materials. Therefore, fitting separate models to each cortical453

region allows spatial covariance parameters, random effects, and residual distributions to vary across cortical454

regions, providing more flexibility. (3) Modeling brain signals by regions, as a divide-and-conquer approach,455

has also been adopted by other spatiotemporal modeling approaches such as Musgrove et al. (2016), who456

has shown that such strategy substantially improves computation efficiency while remaining insensitive to457

model misspecification and edge effects. Additionally, we have performed sensitivity analyses to demonstrate458

that our results are robust to different partitioning boundaries and parameter setups. In supplementary459
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Table 2: ERP data analysis: LPPLs on validation data. The values listed are on the scale of 104. The value with the highest
LPPL in each region (row) is highlighted with boldface.

Region Gfmm Rfmm Gfmmcρjk
Gfmmcρ Rfmmcρjk

Rfmmcρ

Ant Frontal L (R1) -17.62 -95.78 -8.43 -8.66 -10.10 -12.71

Ant Frontal R (R2) -24.93 -81.79 -23.32 -21.32 -11.14 -13.53

Frontal L (R3) -4.44 -88.68 4.29 4.09 3.34 2.53

Frontal R (R4) -7.93 -87.99 -0.23 -0.38 1.19 0.52

Central L (R5) -7.10 -107.32 5.37 5.22 10.54 8.63

Central R (R6) -8.65 -109.98 1.89 1.68 11.59 9.70

Temporal L (R7) -2.11 -59.17 3.80 3.72 1.13 -0.30

Temporal R (R8) -1.13 -59.89 4.94 4.79 1.46 0.06

Parietal L (R9) 9.14 -101.17 22.12 21.99 19.03 18.28

Parietal R (R10) 14.24 -115.25 26.20 26.09 26.33 25.01

Occipital (R11) 9.72 -184.00 31.73 31.87 41.04 40.02

materials, we have also included a comparison between the region-by-region and global modeling approaches.460

The comparison demonstrates that for our data, similar results are obtained in either case, but the LPPL461

statistic suggests that the region-specific modeling fits the data better.462

We first fit the six models used in the simulation to the training data, and assessed the best model463

separately for each of the 11 cortical regions. The run-time for training each model for each of the 11 regions464

is available in the supplementary materials. Results of model selection are listed in Table 2. Table 2 shows465

that for each region, the LPPLs based on Gfmm and Rfmm were systematically lower than those based on the466

Gfmmc and Rfmmc models, indicating that models taking spatial correlation into account provided better467

fits. Moreover, for each region, the maximum LPPL (marked in bold) was achieved either by Gfmmcρjk
or468

by Rfmmcρjk
, which suggests that the non-separable correlation structure was more suitable for this data,469

indicating the spatial correlation varied temporally, and that for some cortical regions the robust model was470

preferred to the Gaussian model, suggesting the presence of some outliers.471

After the best model was selected for each region, the selected model was used to fit the whole data472

set (with 180 subjects). The resulting posterior samples of the electrode-specific fixed effects were used for473

further analysis. To graphically present results continuously over the entire scalp region, not just at the474

electrodes, we interpolated posterior samples of the electrode-specific fixed effects pointwisely using a 2D475

interpolation onto a dense 67× 67 geodesic grid (denoted by D), and performed posterior inference based on476

the dense spatiotemporal grid D × T . We identified spatiotemporal regions that were significantly nonzero477

(or greater than δ in magnitude) for various contrast effects. For example, the contrast effect between478

“cigarette” and “neutral” was calculated by Ccig-neu(s, t) = Bcig(s, t) − Bneu(s, t) pointwisely for each479

posterior sample. Since we have four stimuli, there are six pairs of contrast effects: cigarette vs. neutral480

(CIG-NEU), pleasant vs. neutral (PLE-NEU), unpleasant vs. neutral (UNP-NEU), cigarette vs. pleasant481
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(CIG-PLE), cigarette vs. unpleasant (CIG-UNP), and pleasant vs. unpleasant (PLE-UNP). Based on the482

posterior samples of the six contrast effects, we computed SimBaS and BFDR(δ = 0.5). We then calculated483

the GBPVs from the SimBaS for each contrast effect, and found that the GBPVs were less than 0.001 for484

all six contrast effects. This implies that for each pair of stimuli, there were at least some differences in their485

mean ERP effects. We flagged the spatiotemporal regions on the 3D domain D×T using SimBaS (to detect486

nonzero regions) and BFDR (to detect regions with contrast effects greater than δ), using α = 0.05 as the487

significance threshold.488

Detailed results showing flagged regions over the entire (s, t) domain are displayed in .avi files, which489

mark flagged locations on a 2D scalp while stepping over time; see links to the files in the supplementary490

materials. Figures 3 and 4 summarize some of the key results in the figures based on SimBaS and BFDR491

respectively. The results for SimBaS are summarized and plotted in Figure 3, which contains integrated492

2D-heatmaps for SimBaS values (row 1), integrated 2D-heatmaps for the mean contrast effect marked with493

flagged regions (SimBaS< 0.05) (row 2), as well as the scalp plots of SimBaS values calculated at two time494

intervals [112, 160] ms (row 3) and [232, 300] ms (row 4), using posterior samples averaged across time points495

within these intervals. The 2D-heatmaps in the first two rows demonstrate the results for all time (x-axis)496

and scalp locations (y-axis) while reordering the latter into blocks defined by the 11 cortical regions. The497

BFDR results are summarized in Figure 4, which demonstrates integrated 2D-heatmaps for the contrast498

effect marked with flagged regions (row 1), and scalp plots of local FDR values (i.e., 1− p̂(s, ti), where ti is499

the ith time interval) calculated using posterior samples averaged across three time intervals: [112, 160] ms,500

[232, 300] ms, and [440, 600] ms (respective rows 2-4).501

Examining these integrated 2D-heatmaps or the corresponding .avi files, we see how the spatial distri-502

bution of the flagged regions evolves and changes over time. Six time intervals with evident patterns are503

highlighted in a table, and summary plots for SimBaS and BFDR results at each of these time intervals504

are produced. These results were presented in the supplementary materials (see Table 3 and Figures 5-10)505

together with a detailed description. Briefly speaking, no significant effects were detected before the image506

stimulus was shown ([−100, 0] ms) and during the interval [0, 100] ms. Between 112 ms and 160 ms, a time507

period known as the P1 region, we see a cigarette differential effect, whereby CIG was significantly different508

from NEU, PLE, and UNP in the parietal-occipital (R9-R11) region. From roughly 216 ms to 660 ms, we see509

various degrees of similarities between the response to the cigarette stimulus and that to the two emotional510

stimuli (PLE, UNP). To be more specific, from 216 ms to 232 ms, we observe similar response patterns511

for cigarette and pleasant stimuli; later at 232-300 ms, the response to the cigarette stimulus shows more512

similarity with the pleasant stimulus than the unpleasant stimulus; during the next period (300-440 ms), the513

cigarette stimulus evokes a pattern very similar to those evoked by both pleasant and unpleasant stimuli,514

in contrast with the neutral stimulus. Finally, from 660 ms-800 ms, we see significant differences between515
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Figure 3: Regions flagged by SimBaS. Row 1: integrated heatmaps of the SimBaS plotted in 2D—the x-axis is time and the y-axis is vectorized spatial locations
of the 2D scalp (indexed by region number). Row 2: integrated 2D heatmaps of means contrast effects (color maps) marked with SimBaS flagged regions (black dots).
Row 3-4: scalp plots of new SimBaS values calculated at two time intervals ([112, 140] ms and [232, 300] ms) using posterior samples averaged across these intervals.
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Figure 4: Regions flagged by BFDR. Row 1: integrated 2D heatmaps of mean contrast effects marked with BFDR (δ=0.5) flagged regions (black dots)—the x-axis
is time and the y-axis is vectorized spatial locations of the 2D scalp (indexed by region number). Row 2-4: scalp plots of local FDR at three time intervals ([112, 140]
ms, [232, 300] ms, and [440, 660] ms), marked with BFDR flagged regions. Here the local FDR and the BFDR flagging results were re-calculated based on posterior
samples averaged across the time intervals.
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the response to all pairs of stimuli. These effects could indicate important neurological signals in smokers516

that are indirect measurements of their cravings. These signals can potentially be exploited in predicting517

smoking cessation success or providing longitudinal assessments of cessation drug efficacy.518

Sensitivity Analysis The results presented above rely on several modeling choices, including model fitting519

by scalp regions, determination of the prior correlation parameter for B∗

jk based on preliminary estimates520

B̂∗

jk, and selection of models using cross-validation. To assess the sensitivity of the outputs to these modeling521

choices, we repeated several analyses by refitting the Gfmmρjk
using a different cortical partition, different522

spatial hyperpriors, and a different cross-validation. Results are in the supplementary materials. These523

analyses show that our results are not sensitive to different cortical partition boundaries and different choices524

of spatial prior parameters for B∗

jk; and different cross-validations lead to similar model selection pattern,525

with slight differences on choosing between Gfmmcρjk
and Rfmmcρjk

in four regions.526

4. Discussion527

To compare the effects of different stimuli on the ERP curves in smokers, we have proposed functional528

response regression models for correlated functional data. These methods flexibly capture the complex529

data structure yet yield intuitive and natural inferential summaries. Our application to the ERP data530

demonstrates patterns of differential electrophysiological effects across stimuli, and characterizes similarities531

and differences in the effects evoked by cigarette and emotional stimuli in contrast to the neutral stimuli.532

Our approach provides full Bayesian inference over the entire ERP to localize the key stimuli effects on533

the scalp and over time, which enables us to detect effects that may have been missed had analyses been534

limited to prespecified waveform components, and by incorporating spatial inter-electrode correlation and535

robustness to outliers, may have resulted in greater power to detect stimuli effects according to the results536

of our simulation study.537

We have analyzed an ERP data set in a smoking session study. The same data set has been analyzed538

by Versace et al. (2011) by using a standard ERP analysis approach. In their analysis, they first applied a539

temporal principal component analysis (PCA) to the ERPs, from where they identified six temporal regions of540

interest by using the peak locations of the loading factors of PCA. The mean voltages were then calculated541

by averaging across time windows centered at these temporal locations. Based on the mean voltages, a542

randomization test was performed to identify significant differences between the emotional/cigarette stimuli543

and the neutral stimulus. Versace et al. (2011)’s analysis demonstrated similar neurological responses in the544

presence of cigarette and emotional cues for two of the temporal regions, the 452–508 ms and the 212–316545

ms time windows. It also showed that the cigarette-related pictures enhanced the amplitude of the P1546

component (136-144 ms) above the levels measured in the emotional and neutral conditions. These findings547

are consistent with our findings described in Section 3.2 and the supplementary materials. Our analysis,548

22



however, provides more detailed findings in terms of when and where the significant differences present549

between any pair of stimuli, as demonstrated by the .avi files, Figures 5–10, and Table 3 in supplementary550

materials. This is the key advantage of modeling the entire ERP data set without using reductionistic feature551

extraction.552

While we have focused on modeling the stimulus effects for a group of individuals using averaged EEGs553

(ERPs), the proposed framework can also be used to model EEG data from multiple trials on a single554

individual. It can be further used to model EEGs at both the individual and group level simultaneously.555

This can be done in two different ways. (i) The first way is to model data from both levels all together,556

adding subject- and trial-specific random effect functions. Our modeling framework allows multiple levels of557

random effects, enabling great flexibility for capturing different sources of variability. While in principal this558

could be done with our existing software, for large studies like this one the sample sizes would be enormous,559

which would add considerably to the computational complexity. (ii) An alternative strategy would be to use560

a two-step approach, first modeling each individual’s data independently with first-level MCMC to estimate561

the ERPs per subject, and then taking these as the data in a second-stage group-level MCMC to estimate562

the stimuli effects. This approach allows us to propagate the uncertainty of the first level model to the563

second, and the computation is easily parallelizable. This approach has been used in a different context by564

Morris et al. (2006) to deal with missing functional data.565

We used the Matérn family to model the interfunctional spatial correlations. Depending on the nature566

of the correlation, other parametric families such as the continuous-time AR(1) structure can be easily567

incorporated (Louis, 1988; Simpson et al., 2014). For functional data indexed by points on a lattice, one568

could also assume local correlation patterns. For example, Zhang et al. (2015) used conditional autoregressive569

(CAR) assumptions to model local correlations between functions on a lattice, which can also be easily570

incorporated into our framework.571

While we have focused on wavelets, our dual space models can be used with many other bases including572

splines and principal components. The choice of basis should be based on the characteristics of the functional573

data (Morris, 2015). Our analyses here modeled the temporal ERP waveforms, but our framework and574

software can also model the time-frequency representations of the ERPs, with the only required change575

being the specification of appropriate basis functions for that 2D space. Besides modeling electrode data576

measured on the scalp surface, our modeling framework can also be used to model reconstructed brain577

source signals that could be inferred from the EEG data, e.g., using the surface Laplacian technique (Hjorth,578

1975; Kayser and Tenke, 2015; Carvalhaes and de Barros, 2015). Linking our approach to the source signal579

identification in a joint framework would be a very interesting problem, but beyond the intended scope of580

this paper.581

One potential limitation of our proposed approach is the computation time for Bayesian inference. In582
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supplementary materials, we listed the computation time for running each of the six models for the 11 scalp583

regions, and also performed a run-time analysis to evaluate how the proposed framework scales with various584

data setups. While our algorithms can be run concurrently for all six models for each scalp region, it still585

takes O(10) hours to train the models and calculate the LPPLs. While relatively long compared to simpler586

analytical approaches, this computing time is not inordinate, given the extensive time to conduct studies587

yielding these rich data. It is our view that this extra computing time is a good trade-off given the ability588

of our model to capture information anywhere in space-time and to account for the complex spatiotemporal589

correlation structures. One can further reduce the computation cost in two ways: by using near-lossless590

basis via wavelet compression (Morris et al., 2011), or by replacing the MCMC-based posterior sampling591

by approximation approaches such as variational Bayesian inference (Blei and Jordan, 2006). Based on our592

experience, we expect that the use of a near-lossless basis retaining > 99.5% total energy for each ERP would593

result in a speed-up of 5-20 fold with very little loss of information, and the use of variational inference usually594

reduce the computation time to the scale of minutes (with a sacrifice of narrower confidence bands).595

While our models have numerous complex features that capture various types of spatiotemporal corre-596

lation while inducing robustness to outliers, the model specification and running of software is relatively597

straightforward, so accessible to a broad class of researchers. Algorithms are developed in Matlab and598

C, and compiled using Matlab compiler (MATLAB Compiler). The complied code and demo scripts are599

shared through the link: http://www.apps.stat.vt.edu/zhu/other/FMMC_v0_compiled_May7_2018.zip.600

We are also working on integrating these algorithms with an R package (R Core Team, 2017), which will601

generalize a preliminary R package developed by Rausch et al. (2013).602

Supplementary Materials603

The supplementary materials are enclosed with this submission.604
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