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This supplementary document consists of the following extra materials: Markov chain

Monte Carlo (MCMC) algorithms (Appendices A-B), details about CNEG priors (Appendix

C), posterior analysis (Appendices D-E), parameter setups (Appendix F), extra results on

simulation (Appendices G-H), ERP data analysis (Appendices I-K), sensitivity analysis

(Appendix L), as well as results on fitting a global model to the full data set (Appendix

M).

1. APPENDIX A: MCMC ALGORITHM FOR THE GFMMC MODEL

Assuming the block-diagonal correlation structure for E∗
jk described in Section 2.2.1 and

the CNEG prior for the fixed effect B∗ stated in Section 2.2.2 as well as Appendix C, we

design the following MCMC algorithm for posterior inference of the Gfmmc model:

Step 0. InitializeB∗, {q∗jk}, {s
∗
jk}, {ψajk}, {γajk},ρ based on automatic MLE estimation and

set up prior parameters. Here ρ = (α, ν) or ρ = {αjk, νjk}.

Step 1. Let X̃ = XΓ. Update b∗
jk ∼ N(µjk,Vjk), whereVjk = (X̃TΣ−1

jk X̃+Ψ−1
jk )

−1,µjk =

1



VjkX̃
TΣ−1

jk djk, Σjk = q∗jkZZ
T + s∗jkRjk and Ψjk = diag{ψajk, a = 1, . . . , p}. Here

Rjk depends on ρ.

Step 2. Update {q∗jk} and {s∗jk} using Metropolis-Hastings. First propose new values of

q∗jk, s
∗
jk using log transform, e.g., log(q̃∗jk) = log(q∗jk) + δǫ, for ǫ ∼ N(0, 1) and δ is

the step size. Second calculate the proposal ratio of the random walk proposal:

f(q∗jk|q̃
∗
jk)

f(q̃∗jk|q
∗
jk)

=
q̃∗jk
q∗jk

.

The new parameters {q̃∗jk, s̃
∗
jk} are accepted with probability min{ojk, 1}, where

ojk =
f(djk|q̃

∗
jk, s̃

∗
jk, ·)π(q̃

∗
jk)π(s̃

∗
jk)f(q

∗
jk|q̃

∗
jk)f(s

∗
jk|s̃

∗
jk)

f(djk|q
∗
jk, s

∗
jk, ·)π(q

∗
jk)π(s

∗
jk)f(q̃

∗
jk|q

∗
jk)f(s̃

∗
jk|s

∗
jk)

.

Here we have assumed q∗jk ∼ Inv-Gamma(ajk, bjk), therefore

log
π(q̃∗jk)

π(q∗jk)
= (ajk + 1)(log(q∗jk)− log(q̃∗jk)) + bjk(1/q

∗
jk − 1/q̃∗jk).

Similar formula holds for the ratio π(s̃∗jk)/π(s
∗
jk). The log likelihood ratio takes the

form

log
f(djk|q̃

∗
jk, s̃

∗
jk, ·)

f(djk|q
∗
jk, s

∗
jk, ·)

=
|Σ̃jk|

−1/2 exp{−1/2(djk − X̃b∗
jk)

T Σ̃
−1

jk (djk − X̃b∗
jk)}

|Σjk|−1/2 exp{−1/2(djk − X̃b∗
jk)

TΣ−1
jk (djk − X̃b∗

jk)}
,

where Σjk = q∗jkZZ
T + s∗jkRjk, and Rjk.

Step 3. Update ρ using Metropolis-Hastings. The formulae are the same as the step 5 of

Rfmmc model (in Section 2 of this document), except replacing the formula of Σjk

by Σjk = q∗jkZZ
T + s∗jkRjk.

Step 4. Update Ujk, the (j, k)th column of U, from (U∗
jk|·) ∼ N(µUjk

,VUjk
), where

VUjk
= (ZT (s∗jkRjk)

−1Z+ (Pq∗jk)
−1)−1,

µUjk
= VUjk

ZT (sjkRjk)
−1(djk − X̃b∗

jk).

This step is optional.

Repeat Steps 1-4 until reaching a pre-specified maximum number of iterations.

Note that the Rjk here in the Gfmmc model is the correlation matrix, whereas the

notation Rjk in Rfmmc (in Section 2 in this document) contains the scaling parameters

{λljk}.
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2. APPENDIX B: MCMC ALGORITHM FOR THE RFMMC MODEL

We assume the CNEG prior for the fixed effect B∗ as stated in Section 2.2.2 as well

as Appendix C. For the residual distribution, in Section 2.2.3 we have assumed that E∗
jk

follows a scale-mixture-of-normal setup with a block-diagonal correlation structure, i.e.,

E∗
jk ∼ N(0,Σjk), Σjk = diag {λljk; l = 1, . . . ,L} ⊗Rjk,

λljk ∼ Exp((νEjk)
2/2), (νEjk)

2 ∼ Gamma(aE , bE),

where Rjk is the within-block correlation matrix and λjk = {λ1jk, . . . , λLjk} contains inde-

pendent scaling parameters. The joint conditional posterior density of λjk and ρjk is

f(λjk,ρjk|·) ∝

L∏

l=1

f(dljk|XlB
∗
jk + ZlU

∗
jk, λljk,Rjk)f(λljk)f(ρjk)

∝

L∏

l=1

|λljkRjk|
−

1

2 exp

{
−
1

2
d̃Tljk

(
λ−1
ljkR

−1
jk

)
d̃ljk

}
exp{−

(νEjk)
2

2
λljk}f(ρjk), (1)

where dljk, Xl, Zl denote the lth block of djk, X and Z respectively, and d̃ljk = dljk −

XlB
∗
jk −ZlU

∗
jk. Based on the above joint density, we find that the conditional distribution

of each λljk is a generalized-inverse-Gaussian (GIG) distribution (Jørgensen 1982).

Based on these setups, we design the following MCMC algorithm for posterior inference

of the Rfmmc model:

Step 0. Initialize {νEjk}, {ν
U
jk} and {λljk}, {φmjk}, {ψcjk}, {rcjk},ρ,B

∗ based on automatic

MLE estimation and set up prior parameters. Here ρ = (α, ν) or ρ = {αjk, νjk}.

Step 1. Let X̃ = XΓ. Update b∗
jk ∼ N(µjk,Vjk), whereVjk = (X̃TΣ−1

jk X̃+Ψ−1
jk )

−1,µjk =

VjkX̃
TΣ−1

jk djk, Σjk = ZΦjkZ
T +Rjk and Ψjk = diag{ψcjk, c = 1, . . . , p}.

Step 2. Update U∗
jk, the (j, k)th column of U∗, from (U∗

jk|·) ∼ N(µUjk
,VUjk

), where

VUjk
= (ZTR−1

jk Z+Φ−1
jk )

−1,µUjk
= VUjk

ZTR−1
jk (djk − X̃b∗

jk).

Step 3. Update the scaling parameters {λljk}, {φmjk}, {ψcjk}, {rcjk}. In particular, for

l = 1, . . . ,L, (λljk|·) ∼ GIG(A,B, q), where A = (νEjk)
2,B = (djk − X̃lb

∗
jk −

ZlU
∗
jk)

TR−1
jk (djk − X̃lb

∗
jk − ZlU

∗
jk), q = 1 − S/2, where S is the size of Rjk.

Here X̃l,Zl are the lth row-block of the matrices X̃,Z respectively. Furthermore,

(φ−1

mjk|·) ∼ Inv-Gauss(
√
(νφjk)

2/(U∗

mjk)
2, (νφjk)

2), (ψ−1
cjk|·) ∼ Inv-Gauss(

√
2rcjk/(b

∗
cjk)

2, 2rcjk)

and (rcjk|·) ∼ Gamma(aBjk + 1, ψcjk + bBjk).

Step 4. Update the population scale parameters {νEjk}, {ν
U
jk} from

(νEjk)
2|{λljk}l ∼ Gamma(L+ aE , 1/2

L∑

l=1

λljk + bE),
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and (νUjk)
2|{φmjk}m ∼ Gamma(M + aU , 1/2

∑M
m=1 φmjk + bU ).

Step 5. Update the parameters in ρ. Denote by θ one component of ρ (could be αjk, νjk

or α, ν depending on whether using Rfmmcρjk
or Gfmmcρ). Suppose that we have

assumed the prior θ ∼ Unif(0, C), then θ/C ∈ [0, 1]. We take the logit transform

ζ = log{(θ/C)/(1 − θ/C)} to transfer θ to ζ on the real line, and propose a new

value ζ̃ = ζ + δǫ, where ǫ ∼ N(0, 1) and δ is the step size. Then using change of

variable techniques, we find that

f(θ̃|θ) = f(ζ̃|θ)

∣∣∣∣∣
dζ̃

dθ̃

∣∣∣∣∣ = (2πδ2)−1/2 exp



−

(
logit(

θ̃

C
)− logit(

θ

C
)

)2

/(2δ2)





∣∣∣∣∣
C

θ̃(C − θ̃)

∣∣∣∣∣ ,

f(θ|θ̃) = (2πδ2)−1/2 exp

{
−
(
logit(θ/C)− logit(θ̃/C)

)2
/(2δ2)

} ∣∣∣∣
C

θ(C − θ)

∣∣∣∣ .

Therefore the log proposal ratio is

log
f(θ|θ̃)

f(θ̃|θ)
= log

θ̃

θ
+ log

1− θ̃/C

1− θ/C
.

We now describe the details of updating ρ in two cases. Case I: when {αjk, νjk}

depend on (j, k). Take (αjk, νjk) as an example, the proposed value (α̃jk, ν̃jk) is

accepted with probability min{ojk, 1}, with

log(ojk) = log
f(djk|α̃jk, ν̃jk, ·)

f(djk|αjk, νjk, ·)

f(α̃jk)f(ν̃jk)

f(αjk)f(νjk)

π(αjk|α̃jk)π(νjk|ν̃jk)

π(α̃jk|αjk)π(ν̃jk|νjk)

where the prior ratios f(α̃jk)/f(αjk) and f(ν̃jk)/f(νjk) are constant due to the

using of uniform priors. The log likelihood ratio is

log
f(djk|α̃jk, ν̃jk, ·)

f(djk|αjk, νjk, ·)
=

|Σ̃jk|
−1/2 exp{−1/2(djk − X̃b∗

jk)
T Σ̃

−1

jk (djk − X̃b∗
jk)}

|Σjk|−1/2 exp{−1/2(djk − X̃b∗
jk)

TΣ−1
jk (djk − X̃b∗

jk)}
,

where Σjk = ZΦjkZ
T + Rjk, and Rjk depends on (αjk, νjk). Case II: when ρ

does not depend on (j, k), then the only parameters we consider is ρ = (α, ν). The

proposed value (α̃, ν̃) is accepted with probability min{o, 1}, with

log(o) = log

∏
j,k f(djk|α̃, ν̃, ·)∏
j,k f(djk|α, ν, ·)

f(α̃)f(ν̃)

f(α)f(ν)

π(α|α̃)π(ν|ν̃)

π(α̃|α)π(ν̃|ν)
.

Repeat Steps 1-5 until reaching a pre-specified maximum number of iterations.
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3. APPENDIX C: CORRELATED NORMAL-EXPONENTIAL-GAMMA PRIORS

FOR B∗

In Section 2.2.2, we adopted the correlated Normal-Exponential-Gamma (CNEG) prior

for the wavelet domain fixed effect matrix B∗. Here, we describe more technical details.

For our ERP data, the rows of B∗ contain A blocks, and each block corresponds to one

stimulus effect at the S electrodes. Let B∗
jk denote the (j, k)th column of B∗. Borrowing

the structural shrinkage idea of Griffin and Brown (2012), we assume that B∗
jk = Γb∗

jk,

where Γ is a lower triangular matrix obtained from the Cholesky decomposition of a prior

correlation matrix RB , i.e., RB = ΓΓT . For example, one may specify RB to be a block-

diagonal matrix with A diagonal blocks of size S. We assume that entries of b∗
jk are a

priori independent. Specifically, denoting the cth component of b∗
jk by b∗cjk, we assume a

scale-mixture-of-normal prior for b∗cjk:

b∗cjk ∼ N(0, ψcjk), ψcjk ∼ Exp(rcjk), rcjk ∼ Gamma(aBjk, b
B
jk), a

B
jk > 1. (2)

From the above prior, one can analytically integrate out the intermediate parameters ψcjk

and rcjk to obtain a normal-exponential-gamma (NEG) distribution for b∗cjk. This distri-

bution has zero mean and variance var(b∗cjk) = bBjk/(a
B
jk − 1) when aBjk > 1, and can be

used as a general shrinkage prior for adaptive variable selection (Griffin and Brown 2012).

Following Griffin and Brown (2012), we call the resulting prior forB∗
jk the correlated normal-

exponential-gamma (CNEG) prior, denoted byB∗
jk ∼ CNEG(Γ, aBjk, b

B
jk). We set the CNEG

prior to all columns of B∗ independently. This prior induces sparsity in the wavelet space,

which is known to lead to adaptive regularization in t, and by capturing correlation across

s, induces spatial smoothness across s in Bas(t) in model (1). The specification of the prior

parameter Γ can be achieved through assuming a parametric correlation structure for RB

and updating the parameter in RB via a Metropolis-Hasting sampler. In our implementa-

tion, we specified RB using a preliminary estimate of {B̂∗
jk} and found that the posterior

estimations are not sensitive to a range of parameters in RB . Details on the specification

of RB and the sensitivity analysis are available in Section 6 (Appendix F) and Section 12

(Appendix L) respectively.

We now explain why the CNE prior, i.e., assuming that

b∗cjk ∼ N(0, ψcjk), ψcjk ∼ Exp(ν2jk/2)

does not induce the prespecified correlation structure RB for B∗
jk, whereas the CNEG

prior does. For simplicity, we use a slightly different notation. Let β be one column of

B∗. Then a CNE prior assumes that β = Γb, independently across all columns. The Γ

matrix is known and satisfies ΓΓT = RB . Denote b = (b1, . . . , bp)
T . If we assume that

bi ∼ N(0, ψi), ψi ∼ Exp(ν2i /2) independently for all i, then after integrating out ψi, we

get bi ∼ DE(0, 1/νi). Therefore we have var(bi) = 2/ν2i . Notice that it is important νi to
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depend on i because we wish to have different population scale parameters to take effect on

different bi’s. Denote V = diag(2/ν21 , . . . , 2/ν
2
p). The the covariance now becomes

cov(β) = ΓVΓT . (3)

Denote (Γ)i,j = γi,j, and denote the correlation between βi and βj by ρi,j, then the above

formula implies that

ρij =

∑p
k=1 γikγjk(

2
ν2
k

)
√∑p

k=1 γ
2
ik(

2
ν2
k

)
∑p

k=1 γ
2
jk(

2
ν2
k

)
.

The above formula implies that all sums in ρi,j are weighted by the marginal variance of

b, and they will not cancel out unless ν1 ≡ ν2 ≡ . . . ≡ νp. During MCMC, if the {νi}

parameters will be updated in each iteration, the correlation ρij will vary across different

iterations. One critical fact is that the correlation formula ΓVΓT 6= V1/2ΓΓTV1/2. While

the formula on the right hand side induces a constant correlation

ρij =

∑I
k=1 γikγjk√∑I

k=1 γ
2
ik

∑I
k=1 γ

2
jk

,

the formula on the left hand side does not. This fact might be the main reason that in

Griffin and Brown (2012), they have to design the Γ matrix carefully to achieve certain

correlated structured shrinkage (e.g., fused lasso).

Due to the above reason, the CNE prior does not induce the pre-specified correlation

RB . We therefore suggest to add one more layer of mixture distribution to νi, e.g., assume

νi ∼ g(θ) where θ is common across index i. One example is the CNEG prior stated in (2).

As long as the marginal distribution of βi have finite variance, the V matrix in (3) equals

V = c0I for a constant c0, therefore cov(β) = c0ΓΓ
T = c0RB . In the NEG expression in

(2), the marginal variance of bi is obtained using results in Griffin and Brown (2005).

4. APPENDIX D: CALCULATING POSTERIOR PREDICTIVE LIKELIHOOD FOR

NEW SUBJECTS

To estimate the log posterior predictive likelihood for a validation data set, a necessary

step is to calculate the posterior predictive likelihood for a new subject. The model for a

new subject (indexed by superscript s) at wavelet coefficient j (note we have abbreviated

the double index in wavelet coefficients to a single index) can be written as

dsj = XsBj + usj1+Es
j ,

where usj is the random effect for the new subject. Due to the fact that usj can not be

estimated during the training procedure, it has to be integrated out when calculating the
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posterior predictive likelihood. In Gfmm and Gfmmc models, integrating out the random

effect usj results in a Gaussian distribution with covariance matrix q∗jJ + s∗jI. In the Rfmm

and Rfmmc models, since both usj and components in Es
j follow scaled mixture of normals,

the analytical solution for the integrated density is not easy to obtain. We therefore ap-

proximate the integrated density using Monte Carlo integration. In particular, in the Rfmm

case, since all components of Es
j are independent DE(0, 1/νEj ), we have

f(dsj|Θj) =

∫
f(dsj|Bj , u

s
j , ν

E
j )f(u

s
j |ν

U
j )du

s
j , (4)

where f(dsj |Bj , u
s
j , ν

E
j ) =

∏m
i=1DE(dsij − Xs

iBj − uj, 1/ν
E
j ), d

s
j = (ds1j , . . . , d

s
mj)

T and Θj

contains all parameters except usj. The integration in 4 is then approximated by

f(dsj |Θj) ≈ 1/L
L∑

l=1

(
m∏

i=1

DE(dsij −Xs
iBj − us,lj , 1/ν

E
j )

)
, us,lj ∼ DE(0, 1/νUj ).

In the Rfmmc case, components of Es
j are correlated with a block-wise correlation structure

determined by ρj . Denote by Rρj the correlation matrix of each block , then

f(dsj |Θj) =

∫ ∏

b

f(dsbj|Bj , u
s
j , ν

E
j , ρj)f(u

s
j |ν

U
j )du

s
j , (5)

where b is the index for blocks and

f(dsbj|Bj , u
s
j , ν

E
j , ρj) = |2πR(ρj)|

−1/2(νEj )
nb

(
νEj

√
q(dbj)

)1−nb/2

K1−nb/2(ν
E
j

√
q(dbj)),

where q(dbj) = (dsbj − Xs
bBj − usj1)

TR−1
ρj (d

s
bj − Xs

bBj − usj1) and Kτ (·) is the modified

Bessel function of the second kind and order τ . The above density function is derived from

the multivariate scale mixture of Gaussian employing the density function of GIG in (6)

in the main text. The likelihood f(dsj|Θj) in (5) can then be approximated using Monte

Carlo integration.

5. APPENDIX E: FURTHER DETAILS OF BFDR ANALYSIS

Let C(g)(s1, s2, t), g = 1, . . . , N be N posterior samples of a contrast effect (or any

fixed effect of interest). To flag out regions that are significantly greater than a threshold

δ by controlling the Bayesian false discovery rate (FDR) to be less than α, we perform the

following steps:

1. Estimate the probability discovery function pδ(s1, s2, t) = pr{|B(s1, s2, t)| > δ |Data}

by p̂δ(s1, s2, t) = N−1
∑N

g=1 I{|C
(g)(s1, s2, t)| > δ} for each grid point (s1, s2, t).

2. Sort {p̂δ(s1, s2, t)} in descending order to obtain {p̂δ,(l), l = 1, . . . ,M}, where M is the

total number of grid points.

7



B

A

D

C

 Index of ordered probabilities 

0.2

0.5

1

sψ ψ’

φ
α

Figure 1: A diagram for Bayesian-FDR based inference.

3. Set φα = p̂δ,(s), where s = max{l∗ : (l∗)−1
∑l∗

l=1{1− p̂δ,(l)} ≤ α}.

The set of locations ψ = {l : p̂δ,(l) > φα} is the set of discoveries. The threshold φα is a

cut-point on the posterior probabilities that corresponds to an expected Bayesian FDR of

α, which means that on average ≥ 100(1−α)% locations of the set ψ should have at least δ

difference. That is, if N(ψ) is the cardinality of the set ψ, defined as N(ψ) =
∑M

l=1 I(l ∈ ψ),

then N(ψ)−1
∑

(s1,s2,t)∈ψ
pr{|C(s1, s2, t)| ≤ δ|Data} ≤ α. The above method of determining

the Bayesian FDR-based threshold φα is sketched in a diagram in Figure 1, where the solid

decreasing line denotes the ordered p̂δ(s1, s2, t). The areas denoted by A, B, C, D are the

estimated proportions for true positives, false positives, false negatives and true negatives,

respectively. The threshold φα is indeed determined by constraining B/(A+B) ≤ α. One

can further calculate the corresponding false negative rate (FNR) by C/(C+D), sensitivity

(SEN) by A/(A+ C), specificity (SPEC) by D/(B +D).
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6. APPENDIX F: SETTING INITIAL VALUES FOR MCMC ALGORITHMS AND

HYPER-PRIOR PARAMETERS

The six Bayesian FMM models compared in this paper rely on Markov Chain Monte

Carlo algorithms, which requires initial values for model parameters and parameters in

hyper-priors to be determined. Initial values of B∗
jk,U

∗
jk were calculated using Henderson’s

Mixed Model Equations (MME) (Searle et al. 1992, pages 275-286) independently across

(j, k). A MME assumes that:

djk = XB∗
jk + ZUjk +Ejk,

with E{Ujk} = 0, V ar(Ujk) = q∗jkIM , E{Ejk} = 0, V ar(Ejk) = s∗jkIN . Both Ujk and

Ejk are assumed to be Gaussian. The algorithm follows that of Viktor Witkovsky’s algo-

rithm (available at: http://www.mathworks.com/matlabcentral/fileexchange/200-mixed).

The solution of MME includes {B̂∗
jk, Ûjk, q̂

∗
jk, ŝ

∗
jk}, V ar(B̂

∗
jk), as well as {sd(q̂

∗
jk), sd(ŝ

∗
jk)},

the standard deviation of the variance component estimates.

Set the prior parameter Γ for B∗ in Gfmmc and Rfmmc. As a prior parameter,

the prior correlation matrix RB (hence Γ) of B∗
jk can be specified using parametric forms.

In our ERP analysis, we set RB = IA ⊗R0, the Kronecker product of the identify matrix

IA of size A and a S × S spatial correlation matrix R0. We determine R0 by assuming

a parametric continuous-time, first-order autoregressive correlation structure, called AR(1)

structure, so that (R0)ss′ = ωdss′ with ω ∈ (0, 1) and dss′ > 0 (Louis 1988; Simpson

et al. 2014). Here dss′ is the distance between electrodes s and s′ on the scalp surface.

Larger values of ω induce higher correlation between nearby electrodes a priori. We note

that other parametric structures can be adapted in our framework without difficulty. The

values of ω in AR(1) can be updated using a Metropolis-Hastings sampling step in the

MCMC. In our analysis, we adopt a computationally convenient strategy by prespecifying

ω. In particular, ω is estimated through a least square fit to the sample correlations of

components in {B̂∗
jk} at different pairs of the electrodes. Our simulation analysis shows

that this approach provides a reasonable estimation of ω compared to the underlying truth,

and our sensitivity analysis for the real data has demonstrated that the posterior results

are not sensitive to different prior parameters of ω.

The rest of the parameters vary according to different models. We describe details as

follows:

1. Gfmm: The MME method provides initial estimates {q̂∗jk, ŝ
∗
jk} and their standard

deviations. The initial values of {τajk} and {πaj} are determined following the em-

pirical Bayes method described in Section 4.4 of Morris and Carroll (2006). We have

also assumed hyper-priors τajk ∼ Inverse-Gamma(aτ , bτ ), πaj ∼ Beta(aπ, bπ), and

the parameters of these hyper-prior distributions are determined by constraining the
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mode of the resulting hyper-prior distributions to be the initial values (or mean of

them averaged across all indices) and the variance to be a pre-specified large value.

2. Rfmm: The Rfmm model contains “scaling parameters” {λijk, φmjk, ψajk} as well as

the “lasso parameters” {νEjk, ν
U
jk, ν

B
aj}. By choosing g1(·) to be exponential distribution,

we get E∗
ijk ∼ DE(0, 1/νEjk), U

∗
mjk ∼ DE(1, 1/νUjk), Bajk|γajk = 1 ∼ DE(0, 1/νBaj).

The initial values of the lasso parameters were then determined by letting the MME

estimates ŝ∗jk, q̂
∗
jk, sd(B̂

∗
ajk) equal to the variances of these DE distributions. The initial

values for the scaling parameters are then obtained by sampling from the conditional

distributions of these parameters conditional on other initial values. The initial values

for {πaj} and parameters of the Beta prior of πaj were determined similarly as in the

Gfmm case. Since we chose g2(·) to be the Gamma distribution, the parameters of

these hyper-priors were determined by letting the mode of the distributions equal the

initial value and letting the variance to be a pre-specified large value.

3. Gfmmc and Rfmmc: The initial values for {ψcjk} in the CNEG prior were de-

termined as follows. Since in the CNEG prior, b∗cjk ∼ N(0, ψcjk), ψcjk ∼ Exp(γcjk)

implies that b∗cjk ∼ DE(0, 1/
√

2γcjk), we see that V ar(b∗cjk) = 1/γcjk. Therefore we

set initial values of {γcjk} equal 1/V ar(̂bcjk), where {V ar(̂bcjk)} were estimated from

the MME method. The initial values of {ψcjk} were obtained by sampling from the

conditional distributions of ψcjk, conditional on the initial values of b∗cjk, γcjk.

The (aBjk, b
B
jk) parameters in the CNEG prior were determined by letting the mode of

the Gamma prior (Equation (5) in the main text) to be γ̄jk, the averaged initial values

γcjk across index c, and letting the variance to the Gamma prior to be a pre-specified

value.

In both Gfmmc and Rfmmc, the correlation parameter ρ = (α, v) were initialized

using pre-specified appropriate values and the upper bound for the uniform hyper-

prior Cα, Cv were determined to allow positive definite Matérn covariance structures.

The stepsize for the proposal distribution in the Metropolis-Hastings step of updating

ρ (or ρjk) were tuned so that the acceptance rate is between 20% − 45%.

All other parameters in Gfmmc and Rfmmc are initialized following the similar meth-

ods in the Gfmm and Rfmm models.

7. APPENDIX G: PLOTS OF SIMULATED ERPS

Our simulation was based on a reference ERP dataset—the occipital region (R11) of the

ERP data. In Figure 2, we plotted simulated ERPs (blue curves) together with reference

ERPs (gray curves) for channel 69 and cigarette-related stimulus and for 10 selected indi-

viduals. The simulated datasets were denoted as Gρjk
, Gρ, DEρjk

, and DEρjk
, where G
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Figure 2: Plots of simulated data. Plots of simulated ERPs together with reference

ERPs for channel 69, cigarette-related stimulus, and 10 selected individuals.

indicates data simulated with Gaussian random effects and residuals,DE indicates data sim-

ulated with DE random effects and residuals, and the subscripts ρjk or ρ indicate whether

the true correlation parameters vary across index (j, k).

8. APPENDIX H: MORE SIMULATION RESULTS

Besides FDRǫ and Senξ defined in the main text, we also define false negative rate

(FNRξ) and specificity (SPECǫ) to access the performance of BFDR and SimBaS. The

FNRξ is defined as the number of non-flagged locations with true value greater than or

equal to ξ divided by the total number of none-flagged locations; the SPECǫ is defined as

the number of none-flagged locations with true value less than ǫ divided by the total number

of locations with true value less than ǫ. The four summary statistics (IMSE, IPVar, IWidth,

CprB95 defined in the main text) for the random effects U(t), the FNR1.25 and SPEC.3 for

both the BFDR (δ = 0.6) and the SimBaS approach, are averaged across all five repeated

simulation runs. Results are listed in Table 1.

From Table 1, we observe that the statistics on U(t) show similar patterns as that of

B(t) demonstrated in the main text. In particular, Gfmm and Rfmm show larger IMSE,

11



Table 1: Extra summary statistics of simulation study: integrated mean squared error

(IMSE), integrated posterior variance (IPVar), integrated width of 95% credible interval

(IWidth) and coverage probability of the 95% SCB (CPrB95) of U(t); and the FNRǫ and

SPECǫ calculated for regions flagged using BFDR (δ = 0.6) and SimBaS approaches.

U(t) BFDR (δ = 0.6) SimBaS

Data Model IMSE IPVar IWidth CPrB95 FNR1.25 SPEC.3 FNR1.25 SPEC.3

Gfmm 0.417 0.027 0.422 0.592 0.002 0.997 0.005 0.999

Rfmm 0.466 0.027 0.422 0.567 0.003 0.992 0.006 0.995

Gρjk
Gfmmcρjk

0.209 0.186 2.857 0.997 0.001 0.999 0.004 0.998

Gfmmcρ 0.219 0.288 4.423 0.999 0.002 0.999 0.008 0.998

Rfmmcρjk
0.233 0.190 2.936 0.997 0.002 0.999 0.005 0.999

Rfmmcρ 0.271 0.304 4.722 0.999 0.003 1.000 0.012 0.999

Gfmm 0.735 0.046 0.705 0.569 0.004 0.996 0.008 0.999

Rfmm 0.793 0.046 0.715 0.560 0.004 0.987 0.008 0.993

Gfmmcρjk
0.336 0.338 5.201 0.998 0.002 0.998 0.006 0.998

Gρ Gfmmcρ 0.336 0.331 5.086 0.998 0.002 0.997 0.006 0.998

Rfmmcρjk
0.362 0.328 5.088 0.997 0.003 0.997 0.007 0.998

Rfmmcρ 0.360 0.355 5.524 0.998 0.004 0.998 0.008 0.999

Gfmm 0.481 0.033 0.500 0.609 0.000 0.998 0.001 1.000

Rfmm 0.383 0.023 0.354 0.577 0.000 0.999 0.000 0.999

Gfmmcρjk
0.268 0.256 3.939 0.997 0.000 0.999 0.001 1.000

DEρjk
Gfmmcρ 0.315 0.422 6.513 0.995 0.002 1.000 0.008 1.000

Rfmmcρjk
0.147 0.135 2.084 0.999 0.000 0.999 0.000 0.999

Rfmmcρ 0.187 0.258 4.056 1.000 0.000 1.000 0.000 1.000

Gfmm 1.457 0.088 1.348 0.577 0.001 0.992 0.003 1.000

Rfmm 1.119 0.065 0.991 0.559 0.000 0.997 0.001 1.000

DEρ Gfmmcρjk
0.508 0.622 9.589 0.998 0.001 0.997 0.002 1.000

Gfmmcρ 0.510 0.622 9.589 0.998 0.001 0.996 0.002 1.000

Rfmmcρjk
0.292 0.309 4.829 0.999 0.000 0.999 0.000 0.999

Rfmmcρ 0.288 0.323 5.078 0.999 0.000 0.999 0.000 1.000
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Figure 3: Scalp plots for simulation. True vs. estimated contrast effect at a fixed time

point t = 164 ms. The contrast effect shown is the contrast between cigarette and neutral

stimuli.

lower coverage rate, smaller IPVar and narrower IWidth than Gfmmc and Rfmmc models.

These pattern implies that ignoring correlation at the lowest level of hierarchy leads to

higher estimation error and underestimated posterior variance. Comparing the four FMMc

models that take into account correlations, we find that for data with Gaussian tails, Rfmmc

models still achieve results comparable to the Gfmmc models. For data with DE tails, the

Rfmmc models perform systematically better than Gfmmc on all four statistics. In terms of

BFDR and SimBaS statistics, we found that all methods tend to have low false negative rate

and high specificity, which implies that most non-significant regions are correctly identified

(not flagged) with high probability.

As an intuitive visualization of the ground truth and estimated effects, in Figure 3, we

show scalp plots for true vs. estimated contrast effect at a fixed time point t = 164 ms based

on one simulation run that applies the model Gfmmcρjk
on the simulated data Gρjk

. Addi-

tionally, we have made a movie file that shows how true vs. estimated contrast effect change

over time. The file name is simu_scalpplot_TruevsEstimated.avi, which can be down-

loaded from https://drive.google.com/open?id=1MEKcENBWA11okbvNFafC24kyeFAAQysf.

13



Table 2: More ERP data analysis results: the run-time (in hours) for 2000 MCMC iterations

for all six models and 11 cortical regions.

Regions Gfmm Rfmm Gfmmcρjk
Gfmmcρ Rfmmcρjk

Rfmmcρ

R1 14.86 20.84 21.43 17.48 25.57 20.42

R2 15.91 19.03 18.48 14.00 32.24 27.76

R3 15.22 19.11 18.37 14.22 31.96 26.98

R4 19.83 20.30 22.11 18.42 34.17 28.15

R5 13.06 21.02 22.87 19.33 35.07 28.89

R6 13.68 20.37 19.68 16.25 36.43 29.54

R7 15.81 17.08 18.32 15.00 33.06 27.36

R8 18.59 17.91 21.04 17.34 36.39 29.98

R9 19.40 20.28 22.12 18.44 38.86 31.76

R10 14.52 20.54 23.10 19.07 33.80 29.25

R11 22.82 23.85 25.52 21.38 37.72 31.73

9. APPENDIX I: RUN-TIME ANALYSIS FOR ERP APPLICATION

Run-time for ERP Training Data: the run-time for training the six models, includ-

ing the two FMM models (Gfmm, Rfmm) and the four FMMc models (Gfmmcρjk
, Gfmmcρ,

Rfmmcρjk
, Rfmmcρ), for each of the 11 regions is listed in Table 2. The run-time is cal-

culated based on 2000 MCMC iterations using a computational server with 2 Intel Xeon

E5-2609 4C/4T 2.4Ghz 6.4GT/s 10mb 80w CPUs and 98.3 GB 1333 MHz Registered ECC

DDR3 Memory. The results are based on the training data with 140 subjects. From Table

2, we see that all robust models take longer time than their Gaussian counterparts, and

FMMc models usually take longer time to run than the FMM models. Furthermore, the

separable models (Gfmmcρjk
, Rfmmcρjk

) are slower than their non-separable counterparts

(Gfmmcρ, Rfmmcρ). Overall, if running all regions concurrently, the whole data set takes

at most 39 hours for 2000 MCMC iterations.

A Run-Time Analysis: To further demonstrate how the proposed framework scales

with various data setups, we performed a run-time analysis to evaluate the run-time of

the six models while varying the number of sampling points per ERP, the number of elec-

trodes, and the number of stimuli. Data used in this analysis are based on the training

ERP data (containing 140 subjects) in the scalp region 11. We have plotted the run-time

of all six models by varying the number of electrodes in (6, 10, 14, 18), the number of sam-
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Figure 4: Run-time analysis. An analysis to evaluate the run time of the six models

under different number of electrodes (the left figure), different number sampling points (the

middle figure), and different number of stimuli (the right figure).

pling points in (57, 75, 113, 225), and the number of stimuli in (2, 3, 4). All run-time was

measured in hours based on 2000 MCMC iterations. Results are demonstrated in Figure

4. Figure 4 demonstrates a rough linear increase in run-time for all six models as the

data size/dimension increases. In general, the robust versions (Rfmm, Rfmmcρ, Rfmmcρjk
;

marked with dashed lines) require longer run-time than the Gaussian versions (Gfmm,

Gfmmcρ, Gfmmcρjk
; marked with solid lines). Furthermore, models with non-separable

spatial correlations (Gfmmcρjk
, Rfmmcρjk

; marked using blue color) require longer run-

time than models with separable spatial correlations (Gfmmcρ, Rfmmcρ; marked using red

color), and both types of models run slower than models without spatial correlation (Gfmm,

Rfmm; marked using black color).

In practice, we recommend users to estimate run-time by performing a test run using

a few MCMC iterations. The overall time-cost can be approximated by multiplying the

time-cost per iteration with the total number of MCMC iterations.

10. APPENDIX J: MORE ERP DATA ANALYSIS RESULTS: MOVIE FILES THAT

SHOW FLAGGED REGIONS OVER TIME USING SIMBAS AND BFDR

We have made two movie files that show the flagged regions over time using either the

SimBaS or the BFDR method. The name of the movie files are:

Movie 1: SimuCB_flag_bestModels.avi (results using SimBaS).

Movie 2: BFDR_flag_bestModels.avi (results using BFDR).
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These files can be downloaded from the link:

https://drive.google.com/a/vt.edu/file/d/0B-GWoYrWkA2dcmxsNTNDZWVnUGs/view?usp=sharing

11. APPENDIX K: MORE ERP DATA ANALYSIS RESULTS: SUMMARY TABLE

AND PLOTS OF TIME INTERVALS WITH EVIDENT PATTERNS

TOGETHER WITH A DETAILED DESCRIPTION

In Table 3, we highlight six time intervals with evident patterns resulting from examining

the integrated 2D-heatmaps and the .avi files. The summary plots (on the flagging regions

using SimBaS and BFDR) at each of these time intervals are shown in Figures 5-10. Each

plot includes the integrated 2D heatmaps of mean contrast effects (color maps) marked with

flagged regions using SimBaS (row 1) and BFDR (δ=0.5) (row 3), as well as scalp plots of

new SimBaS values calculated at the time interval (row 3) using posterior samples averaged

across the intervals, and scalp plots of local FDR marked with BFDR (δ = 0.5) flagged

regions (row 4), where the local FDR and the BFDR flagging results were re-calculated

using posterior samples averaged across the interval. In the integrated 2D heatmap plots,

the time interval considered was marked using green vertical lines.

From Table 3, the .avi files, as well as the summary plots shown in Figures 5-10, we

see how the spatial distribution of stimulus differences evolves and changes over time. Re-

assuringly, no (s, t) were flagged for any time points before the image stimulus was shown

([−100, 0] ms) and during the interval [0, 100] ms. Between 112 ms and 160 ms, a time

period known as the P1 region, we see a cigarette differential effect, whereby CIG was

significantly different from NEU, PLE, and UNP in the parietal-occipital (R9-R11) region.

These effects are clearly visible in both SimBaS and BFDR (δ=0.5) results. From roughly

216 ms to 660 ms, we see similarities between the responses to the cigarette stimulus and

the two emotional stimuli, as shown in Figures 6-9.

To be more specific, initially from 216 ms to 232 ms, we observe similar response patterns

between cigarette and pleasant stimuli, with relative potentials both significantly greater

than those for the neutral stimulus in the frontal right and central right regions (R4, R6),

and significantly less than those for the neutral stimulus in the parietal (R9-10) region and

in a part of the occipital (R11) region. Compared to the pleasant stimulus, the response to

the cigarette stimulus differs more from the response to the neutral stimulus in the anterior

frontal right (R2) and the occipital (R11) regions, but overall there is a high similarity

between the response to the cigarette and pleasant stimuli.

Later, at 232−300 ms, the response to the cigarette stimulus shows more similarity with

that for the pleasant stimulus than that evoked by the unpleasant stimulus. In particular,

all three (cigarette, pleasant, and unpleasant) stimuli evoke relative potentials that are

significantly greater than those evoked by the neutral stimulus in the anterior frontal right

16



Table 3: ERP data analysis: time intervals with pronounced flagging patterns, summa-

rized based on both SimBaS and BFDR (δ = 0.5) outputs.

Time(ms) Effects & Primary Regions Comments

[112, 160] CIG-NEU,PLE,UNP(R9-11). Cigarette differential effect. CIG is significantly

different from NEU, PLE, and UNP in the parietal-

occipital region.

[216, 232] CIG,PLE-NEU(R4,6,9-11). Similarity between cigarette and pleasant. Both

CIG and PLE are different from NEU in frontal-

central right, parietal, and partial occipital regions,

with UNP-NEU showing different effects.

[232, 300] CIG,PLE-NEU(R2,4,6,9-11);

UNP-NEU(R1,2,4,6).

Cigarette more similar with pleasant than un-

pleasant. CIG,PLE,UNP are different with NEU in

anterior-front-central right. CIG-NEU and PLE-NEU

are different with UNP-NEU in anterior frontal left

and parietal-occipital regions.

[300, 440] CIG,PLE-NEU(R1-11);

UNP-NEU(R1-7,10).

Similarity between cigarette and emotional

stimuli. CIG is similar with PLE and UNP in con-

trast with NEU, with UNP having less flagged in the

right-temporal, parietal left and occipital regions.

[440, 660] CIG,PLE,UNP-NEU(R1,3-

11).

High similarity between cigarette and emo-

tional stimuli. CIG show similar effects with PLE

and UNP, all having significant difference with neutral

in all regions except anterior frontal right.

[660, 800] CIG-NEU(R1-7);PLE,UNP-

NEU(R1-11);CIG-

PLE(R1-3,5,7-9,11);CIG-

UNP(R2,5);PLE-

UNP(R1,R5).

Difference among all stimuli. Significant differ-

ences are observed for all pairs of contrast effects.
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Figure 5: Summary plots of flagging results at [112, 160] ms. Row 1: integrated 2D heatmaps of the contrast effects (colormaps) flagged using

SimBaS. Black dots mark the flagged regions. The x-axis indicates time and the y-axis indicates vectorized spatial locations of the scalp (indexed by

region number). Row 2: scalp plots of new SimBaS calculated with posterior samples of contrast effects averaged at the time interval. Row 3: integrated

2D heatmaps of the contrast effects flagged using BFDR (δ = 0.5). Row 4: the scalp plots of local FDR marked with BFDR (δ = 0.5) flagged regions,

where the local FDR and the BFDR flagging results were re-calculated using posterior samples averaged across the interval.
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Figure 6: Summary plots of flagging results at [216, 232] ms. Row 1: integrated 2D heatmaps of the contrast effects (colormaps) flagged using

SimBaS. Black dots mark the flagged regions. The x-axis indicates time and the y-axis indicates vectorized spatial locations of the scalp (indexed by

region number). Row 2: scalp plots of new SimBaS calculated with posterior samples of contrast effects averaged at the time interval. Row 3: integrated

2D heatmaps of the contrast effects flagged using BFDR (δ = 0.5). Row 4: the scalp plots of local FDR marked with BFDR (δ = 0.5) flagged regions,

where the local FDR and the BFDR flagging results were re-calculated using posterior samples averaged across the interval.
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Figure 7: Summary plots of flagging results at [232, 300] ms. Row 1: integrated 2D heatmaps of the contrast effects (colormaps) flagged using

SimBaS. Black dots mark the flagged regions. The x-axis indicates time and the y-axis indicates vectorized spatial locations of the scalp (indexed by

region number). Row 2: scalp plots of new SimBaS calculated with posterior samples of contrast effects averaged at the time interval. Row 3: integrated

2D heatmaps of the contrast effects flagged using BFDR (δ = 0.5). Row 4: the scalp plots of local FDR marked with BFDR (δ = 0.5) flagged regions,

where the local FDR and the BFDR flagging results were re-calculated using posterior samples averaged across the interval.
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Figure 8: Summary plots of flagging results at [300, 440] ms. Row 1: integrated 2D heatmaps of the contrast effects (colormaps) flagged using

SimBaS. Black dots mark the flagged regions. The x-axis indicates time and the y-axis indicates vectorized spatial locations of the scalp (indexed by

region number). Row 2: scalp plots of new SimBaS calculated with posterior samples of contrast effects averaged at the time interval. Row 3: integrated

2D heatmaps of the contrast effects flagged using BFDR (δ = 0.5). Row 4: the scalp plots of local FDR marked with BFDR (δ = 0.5) flagged regions,

where the local FDR and the BFDR flagging results were re-calculated using posterior samples averaged across the interval.
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Figure 9: Summary plots of flagging results at [440, 660] ms. Row 1: integrated 2D heatmaps of the contrast effects (colormaps) flagged using

SimBaS. Black dots mark the flagged regions. The x-axis indicates time and the y-axis indicates vectorized spatial locations of the scalp (indexed by

region number). Row 2: scalp plots of new SimBaS calculated with posterior samples of contrast effects averaged at the time interval. Row 3: integrated

2D heatmaps of the contrast effects flagged using BFDR (δ = 0.5). Row 4: the scalp plots of local FDR marked with BFDR (δ = 0.5) flagged regions,

where the local FDR and the BFDR flagging results were re-calculated using posterior samples averaged across the interval.
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Figure 10: Summary plots of flagging results at [660, 800] ms. Row 1: integrated 2D heatmaps of the contrast effects (colormaps) flagged using

SimBaS. Black dots mark the flagged regions. The x-axis indicates time and the y-axis indicates vectorized spatial locations of the scalp (indexed by

region number). Row 2: scalp plots of new SimBaS calculated with posterior samples of contrast effects averaged at the time interval. Row 3: integrated

2D heatmaps of the contrast effects flagged using BFDR (δ = 0.5). Row 4: the scalp plots of local FDR marked with BFDR (δ = 0.5) flagged regions,

where the local FDR and the BFDR flagging results were re-calculated using posterior samples averaged across the interval.
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(R2) and the frontal-central right (R4, R6) regions, but only the response to cigarette

and pleasant stimuli are significantly less than the response to the neutral stimulus in the

parietal-occipital region (R9-11). Additionally, both the BFDR and the SimBaS results

show that the unpleasant stimulus evokes relative potentials that are significantly less than

those evoked by the neutral stimulus in the anterior frontal left (R1) region, but such a

difference is only identified in a tiny area in response to the cigarette and pleasant stimuli.

During the next period (300 − 440 ms), the cigarette stimulus evokes a pattern very

similar to those evoked by the pleasant and unpleasant stimuli, in contrast with those

resulting from the neutral stimulus, except that fewer areas are flagged for UNP-NEU than

for CIG-NEU and PLE-NEU in the temporal right (R8), parietal left (R9) and occipital

(R11) regions. From 440ms to 660ms, the cigarette stimulus shows a response pattern very

similar to those of both the pleasant and unpleasant stimuli, all detecting differences with

the response to the neutral stimulus in the anterior frontal left (R1), and all frontal, central,

temporal, and parietal-occipital regions (R3-R11).

Finally, from 660 ms-800 ms, we observe significant differences between the response to

all pairs of stimuli. In particular, the cigarette stimulus evokes relative potential different

from the pleasant stimulus in the anterior frontal (R1-2), frontal-central left (R3, R5),

temporal right (R8), parietal left (R9), and partial occipital regions (R11). The response

to the cigarette stimulus is different from that evoked by the unpleasant stimulus in the

anterior frontal right (R2) and central left (R5) regions.

In summary, our analysis reveals significant neurological patterns induced by different

types of visual stimuli, with an early differential effect evoked by cigarette stimulus followed

by different degrees of similarities between the cigarette stimulus and the two emotional

stimuli, and followed by significant differences between all pairs of stimuli.

12. APPENDIX L: SENSITIVITY ANALYSIS

The results presented in Section 3.2 in the main text rely on several modeling choices,

including modeling ERP curves by 11 scalp regions, determining the prior correlation of B∗
jk

based on the initial estimate B̂∗
jk, and selecting models using cross-validated computation.

To study the sensitivity of the outputs to these modeling choices, we have repeated several

analyses under different modeling choices. These analyses include: (1) Jittered cortical

partitions. Re-fit Gfmmcρjk to the ERP data based on a new partition—a “jittered”

partition of the scalp into 11 regions so that the boundaries are different from the original

partition. (2) The ω = 0.3 spatial prior. Re-fit Gfmmcρjk by setting the prior correlation

for B∗
jk using an AR(1) structure with a fixed parameter ω = 0.3. (3) The ω = 0.8 spatial

prior. Repeat with the fixed parameter ω = 0.8. (4) A different cross-validation. Re-

do the model selection step using a different data split, so that the new validation set was

sampled from the original training set.
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Figure 11: Sensitivity analysis. The 2D integrated heatmaps of one contrast effect CIG-NEU with flagged regions using both

SimBaS (row 1) and BFDR δ = 0.5 (row 2) approaches, compared between the original fit and three repeated fits with different

modeling choices: the jittered fit, the fit with fixed prior parameter ω = 0.3, and the fit with fixed prior parameter ω = 0.8. All

results are based on the model Gfmmcρjk .
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Table 4: Sensitivity analysis: LPPLs on validation data under a new cross-validation

analysis. The values listed are on the scale of 104. The value with the highest LPPL in

each region (row) is highlighted with boldface.

Region Gfmm Rfmm Gfmmcρjk
Gfmmcρ Rfmmcρjk

Rfmmcρ

Ant Frontal L (R1) -18.902 -95.646 -11.105 -11.388 -10.329 -12.962

Ant Frontal R (R2) -16.982 -79.657 -11.390 -11.524 -10.158 -12.517

Frontal L (R3) -1.635 -86.805 6.235 5.946 4.648 3.743

Frontal R (R4) -7.389 -86.950 -1.041 -1.372 1.596 0.862

Central L (R5) -6.807 -105.042 0.428 -0.018 12.638 10.523

Central R (R6) 1.701 -105.544 16.185 15.876 14.556 12.344

Temporal L (R7) -0.699 -58.476 5.644 5.414 2.157 0.736

Temporal R (R8) 1.519 -58.530 7.198 7.036 2.208 0.780

Parietal L (R9) 15.441 -98.899 30.174 29.948 20.270 19.313

Parietal R (R10) 18.663 -114.126 34.933 34.706 26.556 25.071

Occipital (R11) 19.719 -178.844 54.746 54.540 46.254 44.985

Figure 11 contains summaries of the flagged regions for the contrast effect CIG-NEU

using both the SimBaS (row 1) and the BFDR (row 2) approach from original model fits

and sensitivity analyses (1)-(3) above. From this, we see that the three sensitivity analyses

result in similar flagged regions as the original analysis using either the SimBaS or BFDR

criteria. Thus, we conclude that our results are robust to the cortical partition boundaries

and choice of spatial prior parameters for the B∗
jk.

Outputs of the new cross-validation analysis described in (4) are listed in Table 4.

Comparing these results with the original model selection outputs listed in Table 2 in the

main text, we found that the LPPL uniformly favored the nonstationary spatial models in

all cases, with the Gaussian model favored for some regions but the robust model favored

for others. For cortical regions R2, R4, and R5, both training-validation splits favored the

robust model, and for R3, R7, R8, and R9 both favored the Gaussian models. However,

regions R6, R10, and R11 favored the robust model when the first split was used, and the

Gaussian model when the new split was used, and region R1 favored the Gaussian model

in the original split but the robust model in the new split. These results could be caused

by the random assignment of ERPs with potential outliers into either the training and

validation splits, and suggest that the decision of robust vs. Gaussian models by LPPL
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may be data-dependent.

13. APPENDIX M: MODEL FITTING USING A GLOBAL MODEL

While our proposed framework is suitable to include all electrodes, we have chosen to fit

separate models for each of the 11 cortical regions, and the reasons and benefits have been

explained in the main text. To demonstrate the results obtained by fitting a global model to

the full data set (including all 129 electrodes), in Figure 12, we plot scalp locations flagged

using the BFDR (δ=0.5) approach based on fitting a single model, Gfmmcρjk
to the full

data set. Figure 12 demonstrates similar significance patterns as the results shown in the

main text, with less significant regions flagged for contrast effects CIG-NEU and UNP-NEU

at region 11.

To further demonstrate the benefits of allowing different models for different regions, we

also calculated the model selection statistic—the log posterior predictive likelihood (LPPL)

on validation data based on fitting a global model Gfmmcρjk
, which gives 5.7273 × 105. In

contrast, the LPPL obtained using our regional model fitting strategy is 10.627×105 , which

is 1.86 times higher (in log scale) than the global model fitting approach. This provides

strong evidence in support of our modeling strategy.

As we have explained in the main text, one of the main reasons for model fitting by

scalp regions is that, the spatial correlation between electrodes tends to vary across scalp

regions. To demonstrate this, in Figure 13 we plot the estimated Matérn parameters (pos-

terior means) across the brain regions, including the {(α̂jk, ν̂jk)} parameters estimated by

Gfmmcρjk
for the first 10 wavelet components (in gray lines) and the (α̂, ν̂) parameters

estimated by Gfmmcρ (in red lines). Figure 13 shows that the Matérn parameters vary

substantially across regions.
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Figure 12: Regions flagged using BFDR by fitting a global model to the full data set. Row 1: integrated 2D heatmaps

of mean contrast effects marked with BFDR (δ=0.5) flagged regions (black dots)—the x-axis is time and the y-axis is vectorized

spatial locations of the 2D scalp (indexed by region number). Row 2-4: scalp plots of local FDR at three time intervals ([112, 140]

ms, [232, 300] ms, and [440, 660] ms), marked with BFDR flagged regions. Here the local FDR and the BFDR flagging results

were re-calculated based on posterior samples averaged across the time intervals.
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Figure 13: Estimated Matérn parameters by regions: the estimated α̂ parameters

(A) and ν̂ parameters (B) across 11 regions. The x-axis denotes the scalp regions. In both

plots, the gray lines denote {α̂jk} and {ν̂jk} for the first 10 wavelet components, estimated

using the Gfmmcρjk
model; the red lines denote {α̂} and {ν̂} estimated using the Gfmmcρ

model.
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