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1. MCMC algorithm

Following model (4) and the prior setups in Section 3.3 in the main text,

we design the following Markov Chain Monte Carlo algorithm for posterior

sampling:

Step 0. Initialize B̃, {qk}, {sk}, {ζak} and set prior parameters. In particular,

we use Henderson’s mixed model equations (Searle et al., 1992, page 275-286)

to obtain initial estimates for B̃ and the variance components {qk}, {sk}.
Step 1. Update (γak|D̃k, B̃(−a)k, {qk}, {sk}) and (B̃ak|γak, D̃k, B̃(−a)k, {qk}, {sk})
for a = 1, . . . , A, where B̃(−a)k is the vector of B̃k with the ath component re-

moved.

Frommodel (5) in the main text, we see that D̃k|B̃k, {qk}, {sk} ∼ N(XB̃k,Σk),

where Σk = qkZZT + skIN . We first update γak by calculating the conditional

odds:

Conditional Odds =
f(γak = 1|D̃k, B̃(−a)k,Σk)

f(γak = 0|D̃k, B̃(−a)k,Σk)

=
f(D̃k|γak = 1, B̃(−a)k,Σk)

f(D̃k|γak = 0, B̃(−a)k,Σk)
· f(γak = 1)

f(γak = 0)
(1)

= Conditional Bayes Factor · Prior Odds.
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Further derivations show that

Conditional Bayes Factor =
f(D̃k|γak = 1, B̃(−a)k,Σk)

f(D̃k|γak = 0, B̃(−a)k,Σk)

= (1 +
ζak
Vak

)−1/2 exp

{
1

2
ξ2ak(1 + Vak/ζak)

−1

}
, (2)

where Vak = [XT
(a)(Σk)

−1X(a)]
−1, X(a) is the ath column of matrix X, ξak =

B̂ak/
√
Vak, and B̂ak = VakX

T
(a)Σ

−1
k D̃

+

k for D̃
+

k = D̃k −
∑A

l=1,l 6=a X(l)B̃lk.

Given {γak}, we then update B̃k by using the results (B̃ak|γak = 0, D̃k, B̃(−a)k,Σk) =

δ0, and (B̃ak|γak = 1, D̃k, B̃(−a)k,Σk) ∼ N(µ0
ak,W

0
ak), where µ

0
ak = B̂ak/(1 + Vak/ζak)

and W 0
ak = Vak/(1 + Vak/ζak).

Step 2. Update {qk} and {sk} using Metropolis-Hastings. First, propose new

values of qk, sk using log transform, e.g., log(q̃k) = log(qk) + eǫ, for ǫ ∼ N(0, 1)

and e is the pre-specified step size. Second, calculate the proposal ratio of the

random walk proposal:
f(qk|q̃k)
f(q̃k|qk)

=
q̃k
qk

.

The new parameters {q̃k, s̃k} are accepted with probability min{ojk, 1}, where

ojk =
f(D̃k|q̃k, s̃k, ·)π(q̃k)π(s̃k)f(qk|q̃k)f(sk|s̃k)
f(D̃k|qk, sk, ·)π(qk)π(sk)f(q̃k|qk)f(s̃k|sk)

.

Here we have assumed qk ∼ IG(aqk, b
q
k), therefore

log
π(q̃k)

π(qk)
= (aqk + 1)(log(qk)− log(q̃k)) + bqk(1/qk − 1/q̃k).

Similar formula holds for the ratio π(s̃k)/π(sk). The log likelihood ratio takes

the form

log
f(D̃k|q̃k, s̃k, ·)
f(D̃k|qk, sk, ·)

=
|Σ̃k|−1/2 exp{−1/2(D̃k −XB̃k)

T Σ̃
−1

k (D̃k −XB̃k)}
|Σk|−1/2 exp{−1/2(D̃k −XB̃k)TΣ

−1
k (D̃k −XB̃k)}

where Σk = qkZZ
T + skIN , and Σ̃k = q̃kZZ

T + s̃kIN .

Step 3. Update Ũk from (Ũk|·) ∼ N(µUk
,WUk

), where WUk
= (s−1

k ZTZ+

q−1
k IM )−1,µUk

= WUk
ZT s−1

k (D̃k −XB̃k). This step is optional.

Repeat Steps 1-3 until reaching a pre-specified maximum number of iterations.
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2. Setting initial values and hyper-prior parameters

The proposed Bayesian MFMM requires multiple sets of hyper-prior param-

eters, and the MCMC algorithm requires initial values for B̃, {qk}, {sk} and

{ζak}. We discuss the setting of these parameters as follows:

1. Initial values for B̃, {qk}, {sk} and {ζak}. Initial values of B, {qk}, {sk}
were calculated by applying Henderson’s Mixed Model Equations (MMEs)

(Searle et al., 1992, pages 275-286) independently across the index k. A

MME assumes that:

dk = Xbk + Zuk + ek,

with E{uk} = 0,Var(uk) = qkIM , E{ek} = 0,Var(ek) = skIN . Both

uk and ek are assumed to be Gaussian distributed. The algorithm fol-

lows that of Viktor Witkovsky (available at Matlab Central’s website:

http://www.mathworks.com/matlabcentral/fileexchange/200-mixed). The

solution of MME includes {b̂k}, {q̂k, ŝk}. These estimates were treated

as the initial values for {B̃k}, {qk}, {sk} in our MFMM model (4). The

initial values for {ζak} are estimated by var(b̂k) which is available as a

byproduct of the MME approach.

2. Parameters for the Inverse-Gamma priors. We determine the Inverse-

Gamma parameters {(ask, bsk)}, {(aqk, b
q
k)}, and {(aζk, b

ζ
k)} by letting the

mode of Inverse-Gamma distributions equal to the initial values and letting

the variance of the Inverse-Gamma distributions equal to a pre-specified

large value (e.g., 103). With these constraints, we can solve the two pa-

rameters explicitly for each k.

3. Parameters for the Beta priors. We determine the Beta parameters (aπk , b
π
k )

of πak following the similar way to determining the Inverse-Gamma pa-

rameters. In particular, we let the mode of the Beta distribution equal

to the initial value π̂ak and let the variance of the Beta distribution be

a pre-specified value (e.g., 0.08). The initial values {π̂ak} are calculated

from the (conditional) odds using equations (1),(2), and the initial values

of B̃, {qk}, {sk} and {ζak}.
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3. Code sharing

We have shared matlab code which calls a C executable for implementing

the proposed approach. In the shared code, we demonstrated an example that

runs simulate 1 without replication. We have shared this code through the

RunMyCode repository (http://www.runmycode.org/).

4. More results for sensitivity analysis

As discussed in Section 6 of the main text, we have performed a sensitivity

analysis to study whether the results presented in Section 5 in the main text

are sensitive to different model choices or hyperparameter settings. We have

performed the analyses (i)-(iii) described in the main text. In Figure 1, we

plot the posterior mean and the 95% SCB for the contrast effect C, and flagged

regions detected using the SimBaS and BFDR approaches on the posterior mean.

The results from the original analysis is shown in (a.1)-(a.2) in the first row,

and the results from analyses (i)-(iii) are demonstrated in rows 2-4 in Figure 1.

Figure 1 shows that, all analyses result in posterior means and the 95% SCBs

similar to the original analysis. The flagged regions using BFDR (δ = 0.02) are

simlar across all analysis. The flagged locations using the SimBaS approach

demonstrate similar patterns across all analysis, with slight variations shown at

a few low-intensity regions on exictation curves 380-390 and 460-480 nms.

5. Convergence diagnostics for MCMC sampling

As discussed in Section 7 in the main text, the convergence of the MCMC

samples needs to be monitored and tested. We monitored the behavior of the

posterior samples by checking the trace plots, the autocorrelation plots, and

calculating the effective sample size (ESS) of the retained samples. Stable trace

plot and low autocorrelation indicate good mixing, and a higher effective sample

size indicates a better mixing. We tested the convergence of the chains by calcu-

lating the Geweke’s Z-statistics (Geweke, 1992) based on the retained samples
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Figure 1: Regions detected using the SimBaS and BFDR (δ = 0.02) approaches. Detected

regions are flagged in magenta on posterior mean of the contrast effect C. Row 1 contains the

results from the original analysis, and rows 2, 3, and 4 are results for analyses (i), (ii) and (iii)

respectively. The shaded gray regions are the 95% SCBs calcuated by adjusting EER across

all 16 curves.
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(i.e., throwing away samples in the burnin period). Since Geweke’s Z-statistic

has an asymptotically N(0, 1) distribution, Z-statistics with absolute values less

than 2 indicate that the first 10% and the last 50% of the retained samples

have no differences in terms of their means. When the test is performed on

multiple components of a sequence/array, we expect to see that the type I error

is less than the significant level α (e.g., α = 5%), i.e., 1− α of the testings give

Z-statistics < 2 in absolute value.

We performed these diagnostics on the simulation runs and the real data

analysis. In Figure 2 - 3, we show summary plots for the diagnostic analysis for

simulation 1 (based on one run). From these plots, we see that the parameters

B̃, {πak}, and {ζak} are mixing well, most having ESS greater than 1000 (based

on the 2000 retained samples) and more than 90% of the Geweke’s Z-statistics

lie within the [−2, 2] interval. In contrast, some components of Ũ show higher

autocorrelations (e.g., the component Ũ11) and the proportion that ESS> 1000

for components in Ũ is lower (0.88). The good mixing of B̃ and its hyper-

parameters may be explained by the fact that we have integrated out the random

effect Ũ while updating B̃. Another observation is that, the ESS for {qk}, {sk}
are lower, with {qk} having around 200 and {sk} having around 400 ESS. This

may be caused by the fact that Metropolis-Hastings samplers usually have lower

than 50% acceptance rate, therefore the chains are not updating very frequently

which results in lower ESS. Since our posterior inference has been focused on

the fixed effects, we found 5000 iterations with a 3000 burnin period sufficient

for our analysis. If the inference for the variance components is of interest, we

suggest to run more iterations (e.g., keeping at least 104 samples after burnin).

Summary plots for diagnostics of the real data analysis are demonstrated

in Figure 4. From these plots, we see that the mixing of the parameters are

similar to that of the simulation studies. As in the simulation, we see that the

ESS for the variance components {sk} is relatively low (around 200 based on

2000 samples).
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Figure 2: Summary plots of the convergence diagnostics for Simulation 1 (part I). Rows 1-3 are the summary plots for the parameters B̃, Ũ and

{πak} respectively. In each row, the first two columns are the trace plot and autocorrelation plot for a selected component, the column 3 is the

kernel density estimation of the effective sample sizes (ESS) calculated for all components, and the column 4 is the kernel density estimation of the

Geweke’s Z-statistics calculated for all components. In the titles of plots in columns 3-4, we have noted the proportion of all components with values

greater than a threshold.
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Figure 3: Summary plots of the convergence diagnostics for Simulation 1 (part II). Rows 1-3 are the summary plots for the parameters {ζak}, {qk}

and {sk} respectively. In each row, the first two columns are the trace plot and autocorrelation plot for a selected component, the column 3 is the

kernel density estimation of the effective sample sizes (ESS) calculated for all components, and the column 4 is the kernel density estimation of the

Geweke’s Z-statistics calculated for all components. In the titles of plots in columns 3-4, we have noted the proportion of all components with values

greater than a threshold.
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Figure 4: Summary plots of the convergence diagnostics for the real data analysis. Rows 1-4 are the summary plots for the parameters B̃, {πak}, {ζak}

and {sk} respectively. In each row, the first two columns are the trace plot and autocorrelation plot for a selected component, the column 3 is the

kernel density estimation of the ESS calculated for all components, and the column 4 is the kernel density estimation of the Geweke’s Z-statistics

calculated for all components. In the titles of plots in columns 3-4, we have noted the proportion of all components with values greater than a

threshold.
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