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Abstract

Many scientific studies measure different types of high-dimensional signals or

images from the same subject, producing multivariate functional data. These

functional measurements carry different types of information about the scien-

tific process, and a joint analysis that integrates information across them may

provide new insights into the underlying mechanism for the phenomenon un-

der study. Motivated by fluorescence spectroscopy data in a cervical pre-cancer

study, a multivariate functional response regression model is proposed, which

treats multivariate functional observations as responses and a common set of co-

variates as predictors. This novel modeling framework simultaneously accounts

for correlations between functional variables and potential multi-level structures

in data that are induced by experimental design. The model is fitted by per-

forming a two-stage linear transformation—a basis expansion to each functional

variable followed by principal component analysis for the concatenated basis co-

efficients. This transformation effectively reduces the intra- and inter-function

correlations and facilitates fast and convenient calculation. A fully Bayesian
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approach is adopted to sample the model parameters in the transformed space,

and posterior inference is performed after inverse-transforming the regression

coefficients back to the original data domain. The proposed approach produces

functional tests that flag local regions on the functional effects, while control-

ling the overall experiment-wise error rate or false discovery rate. It also enables

functional discriminant analysis through posterior predictive calculation. Anal-

ysis of the fluorescence spectroscopy data reveals local regions with differential

expressions across the pre-cancer and normal samples. These regions may serve

as biomarkers for prognosis and disease assessment.

Keywords: Bayesian methods, functional data analysis, mixed models,

multivariate functional regression, fluorescence spectroscopy, wavelets,

principal component analysis

1. Introduction

Rapidly expanding modern technology enables the automatic collection of

high-dimensional data in functional form. Examples include signals, images, and

many emerging high-throughput digital measurements. The increased preva-

lence of such data promotes the development of functional data analysis. While5

considerable efforts have been made to analyze functional data (Ramsay and Sil-

verman, 1997), existing approaches often focus on modeling functional variables

that have a common support and the same interpretation. Many applications,

however, involve simultaneously collecting different functional variables. For

example, in economics, a firm’s market value and trading volume constitute two10

different financial profiles; in environmental studies, the air pollution level is of-

ten measured with the temperature and air pressure for a given location over a

period of time; in neuroscience experiments, different types of brain images, such

as electroencephalograms (EEGs), magnetic resonance images (MRIs), and dif-

fusion tensor images (DTIs), are often collected for the same subject, resulting in15

“multi-modal” imaging data (Uludag and Roebroeck, 2014). In these situations,

the multiple functional variables have different interpretations. They character-
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ize different aspects of the same subject. Joint analysis that integrates these

variables, also called data fusion (Castanedo, 2013), helps borrow information

from different resources, which may provide new insights into the underlying20

mechanism for the phenomenon under study (e.g., how temperature and air

pressure interact to influence the concentration of pollutants).

Despite the promise of borrowing strength across different resources, the

joint analysis of multiple functional variables has not received much attention

in the literature. There is extensive work on modeling functional data with25

hierarchical structures induced by crossed or nested experimental designs (Mor-

ris and Carroll, 2006; Greven et al., 2010; Zhu et al., 2011; Goldsmith et al.,

2012; Scheipl et al., 2014; Goldsmith et al., 2015; Backenroth et al., 2016), spa-

tial/temporal correlations (Giraldo et al., 2010; Delicado et al., 2010; Hörmann

and Kokoszka, 2010; Aue et al., 2015), or both (Baladandayuthapani et al.,30

2008; Zhou et al., 2010; Staicu et al., 2010). However, these approaches are all

based on the assumption that functional data are defined on a common domain

and have the same or a similar interpretation. In the recent work of Zhu et al.

(2016a) and Qiao et al. (2015), multiple functional variables are used in the

functional graphical model setup, but these methods mainly focus on charac-35

terizing the conditional independence between functions using a graph. To our

knowledge, there has been little effort to associate multivariate functional data

with other covariates.

In the scalar-on-function regression in which scalar responses are regressed

on functional predictors (Morris, 2015), multiple functional variables can be40

easily incorporated as predictors, regardless of whether they have the same in-

terpretation (Zhu and Cox, 2009; Zhu et al., 2010; Fan et al., 2015). However,

since the scalar-on-function regression treats functional variables as covariates,

it models the conditional expectation of a scalar given the functional variables,

and thus does not directly characterize the inter-function correlations or compli-45

cated multi-level structures between the functional variables. In this paper, we

consider the joint analysis of multiple functional variables. We propose a multi-

variate functional response regression model that jointly regresses multivariate
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functional data on a common set of predictors while simultaneously account-

ing for potential multi-level structures in the data. In particular, we propose a50

flexible multivariate functional mixed model (MFMM) to incorporate intra- and

inter-function correlations as well as correlation induced by hierarchical designs.

In the proposed MFMM, directly parameterizing intra- and inter-function

correlations is challenging, because we do not have prior knowledge of the cor-

relation structure, and existing nonparametric approaches, such as the methods55

of Yao (2007) and Yang et al. (2016), can only be used to estimate the intra-

function correlation. To address this issue, we propose a convenient two-stage

transformation approach through lossless or near-lossless basis representation.

First, we represent each functional variable using a basis expansion. This trans-

forms each functional variable to the dual space of basis coefficients. We then60

take the basis coefficients of all functional variables from one multivariate func-

tional observation and concatenate them to form a long vector. Finally, we apply

principal component analysis (PCA) by treating the entries in the concatenated

vectors as variables and all observations as independent samples, which further

reduces the correlations between the pooled basis coefficients. Assuming that65

the functional variables are Gaussian processes, the resulting principal compo-

nent (PC) scores of the concatenated basis-coefficient sequences are approxi-

mately independent of each other. This enables us to fit separate mixed models

to each PC independently in the transformed space, using the PC scores from all

observations as data. This results in fast and easily parallelizable computation.70

Since this two-stage transformation preserves the linear mixed model format and

is invertible, Bayesian inferences can be performed in the original data space

after inverse-transforming the posterior samples of the regression coefficients.

This preserves the interpretability of the inferential results. Acknowledging its

benefits, the basis-expansion-based transformation has been adopted in many75

functional data regressions; see Morris (2015) for a thorough review. Two-stage

functional representations have also been used by James (2002), Reiss and Og-

den (2007), and Reiss and Ogden (2010) in the context of scalar-on-function

regression.
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Compared to the existing methods, the proposed MFMM approach has the80

following major advantages. (1) It jointly models multiple functional vari-

ables, including those with different domains or different interpretations. (2)

It accounts for intricate multi-level structures in the data. (3) The two-stage

transformation avoids the hassle of directly parameterizing the intra- and inter-

function correlations, leading to fast and easily parallelizable computation. (4)85

It yields interpretable Bayesian posterior inference in the original data space.

(5) The posterior inference produces functional tests that adjust for the over-

all experiment-wise error rate (EER) or false discovery rate (FDR). (6) The

Bayesian approach enables the classification/discrimination of new functional

observations through posterior predictive calculation. Our analysis of fluores-90

cence spectroscopy data reveals local regions with differential expressions across

the pre-cancer and normal tissue samples. These regions may serve as biomark-

ers for prognosis and disease assessment.

The outline for the rest of this paper is as follows. In Section 2, we describe

the motivating example—the fluorescence spectroscopy data in a cervical pre-95

cancer study. We describe the proposed MFMM in Section 3, demonstrate

its performance using simulation studies in Section 4, and show fluorescence

spectroscopy data analysis in Section 5. In Section 6, we describe a sensitivity

study to evaluate whether our results are sensitive to different model choices

and parameter setups. We provide a final discussion in Section 7. Details on100

the computational algorithm, parameter settings, and extra analytic results are

available in the supplementary materials.

2. The fluorescence spectroscopy data in a cervical pre-cancer study

This work is motivated by the fluorescence spectroscopy data arising from

a cervical pre-cancer study. Fluorescence spectroscopy is an optical technique105

that captures the spectra of fluorescent lights emitted by a given material (e.g.,

a tissue sample). It provides a non-invasive, low-cost alternative to existing

approaches for the diagnosis and assessment of early stage cervical cancer (Ra-
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(b) Excitation−Emission Matrix
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Figure 1: Plots of one fluorescence spectroscopy measurement. (a) Fluorescence spectral

curves at different excitation wavelengths in nanometers (nms). (b) Image plot of the

excitation-emission matrix (EEM). (c) Plot of a concatenated spectral curve, in which we

have labeled the excitation wavelengths of some spectral curves at their peak intensities.

manujam et al., 1996). The data studied in this paper are collected from a

clinical study that used multiple fluorescence spectra to detect cervical abnor-110

malities.

Each measurement consists of multiple spectral curves measured on the same

cervical tissue site. The measurement was taken in the following way: an ex-

citation light at a certain fixed excitation wavelength is produced to illuminate

the cervical tissue. During illumination, the excitation light is absorbed by115

various endogenous fluorescent molecules in the tissue, resulting in the emis-

sion of fluorescent light. The emitted fluorescent light is then captured by an

optical detector that produces a spectrum as a smooth curve. The excitation

light can be varied at a sequence of excitation wavelengths, producing multi-

ple spectral curves for each measurement. In Figure 1 (a), we demonstrate120

one measurement. It contains 16 spectral curves measured at excitation wave-

lengths ranging from 330 nm to 480 nm, with increments of 10 nm, where each

spectral curve contains fluorescence intensities recorded on a range of emission

wavelengths between 385 nm and 700 nm. Here, the fluorescence intensity is

in arbitrary units. It has been normalized through dividing by the excitation125

light energy measurement for each excitation wavelength (Lee et al., 2005) and

thus is comparable across different excitation wavelengths. We often use a color
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band to represent the intensities of each spectral curve and stack all 16 spectra

according to their excitation wavelengths, as shown in Figure 1 (b). We call

such data the excitation-emission matrices (EEMs). To display multiple EEMs130

in one plot, we often concatenate spectral curves to form a one-dimensional

vector. A plot is shown in Figure 1 (c), in which the excitation wavelengths of

the spectra are labeled at their peak intensities.

The data presented in this paper were collected using the same instrument

(called FastEEM3) in the same clinic (British Columbia Cancer Agency, Van-135

couver, CA). They were preprocessed following a six-step procedure, the details

of which were described by Maŕın et al. (2006). The processed data contain 534

EEM measurements, among which 143 are from pre-cancer samples, and 391

are from normal samples. Here, pre-cancer refers to tissue sites that were diag-

nosed as cervical intraepithelial neoplasia (CIN) II or worse, and normal refers140

to sites that were diagnosed as CIN I or better. Both are based on pathological

diagnosis of cervical tissue biopsies. All EEMs were measured from sites with

colposcopic tissue type “squamous”, and from pre-menopausal patients.

As shown in Figure 1, an important characteristic of the EEM data is that,

the supports of the 16 spectral curves are different—the left and right bound-145

aries are cropped differently at different excitations. Such cropping is common

practice in EEM data preprocessing, with the purpose of excluding unwanted

noise (Chang et al., 2002). Besides different supports, the 16 spectral curves

are likely to be correlated due to their natural ordering caused by excitation

wavelengths. These data constitute an example of multivariate functional data150

with functional variables supported on different domains.

Analytical approaches that extract features by treating curves as vectors

(Yamal et al., 2012; Chang et al., 2013) are often considered suboptimal be-

cause they fail to take into account the “functional” nature of the curves. Zhu

and Cox (2009) and Zhu et al. (2010) adopted scalar-on-function regressions to155

select “important” functional predictors while simultaneously performing clas-

sification. Although scalar-on-function regressions are effective for many pur-

poses, they do not directly model the correlation between curves and are not
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flexible enough to incorporate complex multi-level data structures. To address

these issues, we introduce a general functional-response regression framework for160

the joint analysis of multivariate functional data. This new framework allows us

to model the intra- and inter-function correlations, to estimate the effects of var-

ious covariates, and to incorporate potential hierarchical structures in the data.

The application to EEM data helps identify systematic differences between pre-

cancer and normal samples, and enables the prediction of disease status for new165

observations.

3. Methods, calculations, and posterior analysis

In this section, we establish the notion of multivariate functional objects

and introduce the proposed regression framework. To clarify the notations, we

use underlined letters (e.g., Y , µ) to denote a multivariate functional object,170

and use boldfaced letters (e.g., Y , B) to denote vectors of multivariate func-

tional objects. Regular sequences, vectors, or matrices are also highlighted using

boldface (e.g., d, t, X).

3.1. The multivariate functional mixed models

We define a multivariate functional object following a setup similar to that175

of Zhu et al. (2016a). Let Y = (Y 1, . . . , Y p) denote a collection of random

functions, with the jth component Y j taking values in L2(Tj), and Tj be-

ing a closed subset of Rdj , dj ≥ 1. The domain of Y can then be denoted

by T =
⊔p
j=1 Tj , where

⊔
denotes the disjoint union defined by

⊔p
j=1 Tj =⋃p

j=1 {(t, j) : t ∈ Tj}. We use the notations tj and t to denote the sets of finite180

discrete grids of Tj and T on which the functional data are measured. For each

j, let {φjk}∞k=1 denote an orthonormal basis of L2(Tj). We define an extended

basis function ψjk = (0, . . . , 0, φjk, 0, . . . , 0), which is a 1× p vector of functions

with the jth component φjk, and 0 functions elsewhere. Then the collection

{ψjk, j = 1, . . . , p, k = 1, . . . ,∞} forms an orthonormal basis of L2(T ). Let185

(L2(T ),B(L2(T )), P ) be a probability space, where B(L2(T )) is the Borel σ-
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algebra on L2(T ). Then the probability law (distribution) of Y is induced by

the probability measure P .

We further define Y as a multivariate Gaussian process as follows. Let

µ0 = (µ1
0, . . . , µ

p
0) be an element in L2(T ). Denote by K = {kij : Ti × Tj → R}

a collection of covariance kernels such that cov{Y i(s), Y j(t)} = kij(s, t), s ∈

Ti, t ∈ Tj . We assume that K is positive semidefinite and trace class. Here,

positive semidefinite means that

p∑
i,j=1

∞∑
k,l=1

dikdjl

∫
Tj

∫
Ti

kij(s, t)φik(s)φjl(t)dsdt ≥ 0

for any square-summable sequence {dik, i = 1, . . . , p, k = 1, . . . ,∞}, and trace

class means that

p∑
j=1

∞∑
l=1

∫
Tj

∫
Ti

kjj(s, t)φjl(s)φjl(t)dsdt <∞.

Then µ0 and K uniquely determine a Gaussian process on L2(T ) (Prato, 2006),

which we call a multivariate Gaussian process, and write Y ∼ MGP(µ0,K).190

We now describe a mixed model framework treating Y as the response.

Let {Y i, i = 1, . . . , N} represent N multivariate functional responses. Let

{Xia, . . . , XiA} be A covariates for the ith measurement. Furthermore, suppose

that the N measurements form M batches (i.e., groups of measurements) so

that the batches may be systematically different from each other. Such a batch195

structure may be caused by having multiple measurements (or samples) per

subject (or unit). Let Zim = 1 if the ith measurement belongs to the mth

batch, and 0 otherwise. Then a multivariate functional mixed model is written

as

Y i =

A∑
a=1

XiaBa +

M∑
m=1

ZimUm + Ei, i = 1, . . . , N, (1)

where Ba = (B1
a, . . . , B

p
a) is the multivariate functional fixed effect correspond-200

ing to the ath covariate, Um = (U1
m, . . . , U

p
m) is the multivariate functional

random effect corresponding to the mth batch, and Ei = (E1
i , . . . , E

p
i ) is the

residual that is assumed to be independent across the index i. The term
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∑M
m=1 ZimUm captures the group structure in the data and can be omitted

if such a structure is not present. The random effects {Um} are assumed to be205

independent across index m, and independent of the residuals {Ei}. Addition-

ally, all items in {Um} and {Ei} are assumed to have zero means.

We further stack the responses and the regression coefficients in model (1)

to form vectors of multivariate functional objects. Model (1) is re-written as

Y = XB +ZU +E, (2)

where Y = (Y 1, . . . , Y N )T , B = (B1, . . . , BA)T , U = (U1, . . . , UM )T , and210

E = (E1, . . . , EN )T . Here, X is a N ×A design matrix for the fixed effect, and

Z is a N×M binary design matrix for the random effect. Model (2) constitutes a

general multivariate functional mixed model framework, abbreviated as MFMM.

Our goal is to estimate B and U and characterize their uncertainties.

3.2. Model reparameterization with a two-stage transformation215

Since Y i has been written as the linear combination of {Ba}, {Um} and Ei in

model (1), it is natural to assume that the unobserved multivariate functional

objects {Ba}, {Um} and {Ei} also take values in the same L2(T ) space as

Y i. With this assumption, all multivariate functional objects in the MFMM

can be represented by basis expansions using a common orthonormal basis.220

Taking Y i as an example, let {φjk}∞k=1 denote an orthonormal basis of L2(Tj),

then Y ji (t) =
∑∞
k=1 dijkφjk(t) where dijk = 〈Y ji , φjk〉 =

∫
Tj
Y ji (t)φjk(t)dt. The

coefficient sequence dji = (dij1, dij2, . . .) lies in the space of square-summable

sequences, denoted by `2j =
{
djk :

∑∞
k=1 d

2
jk <∞

}
. Let di = (d1i , . . . ,d

p
i ), then

di is a concatenated vector of infinite sequences and di lies in `2 =
∏p
j=1 `

2
j .225

Since `2j and L2(Tj) are isometrically isomorphic for each j, once an orthonormal

basis of L2(T ) has been chosen, there is a one-to-one mapping between L2(T )

and `2. This enables us to transform the MFMM from L2(T ) to `2.

To be more specific, denote by {di}, {ba}, {um}, {ei} the `2 space counter-

parts of {Y i}, {Ba}, {Um}, and {Ei}, respectively. We can stack the sequences
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in `2 to form two-dimensional (2-d) arrays. For example, denote

D =


d1

d2
...

dN

 =


d11 d21 · · · dp1

d12 d22 · · · dp2
...

...
. . .

...

d1N d2N · · · dpN

 ,

then D is a 2-d array with N rows and p column-blocks, and each block (e.g.,

d21) is an infinite sequence. We similarly denote B∗ = (b1, . . . , bA)T , U∗ =

(u1, . . . ,uA)T , and E∗ = (e1, . . . , eN )T . The basis expansions in L2(T ) can

then be represented through linear operations: Y = DΨ, B = B∗Ψ, U =

U∗Ψ, E = E∗Ψ, where Ψ is a 2-d array (with an infinite number of rows and

p columns) consisting of basis functions, i.e.,

Ψ =


ψ1

ψ2

. . .

ψp

 ,

and ψj = (φj1, φj2, . . .)
T is a column vector of basis functions in L2(Tj) for

j = 1, . . . , p. Since Ψ preserves the linear operation, model (2) is equivalent to230

the following model in the `2 space:

D = XB∗ +ZU∗ +E∗, (3)

Note that D, B∗, U∗, and E∗ are 2-d arrays with the same number of rows as

their L2(T )-space counterparts and an infinite number of columns. Since `2 is

the dual space of L2(T ), we call model (3) the dual-space model.

The dual-space model in (3) brings several advantages for model fitting.235

First, many basis expansions, such as Fourier expansion and wavelets, have the

“whitening” property, meaning that, compared with the correlation between

function values at two adjacent grid points, the correlation between the basis

coefficients is substantially reduced. As an illustration, Figure 2 (b)-(c) shows

the empirical correlations before and after wavelet transformation based on sim-240

ulated EEM data. This property allows us to assume simplified correlation
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structures (e.g., diagonal) for the intra-function correlation in the dual-space

model. In the dual space, the intra-function correlation refers to the correlation

between the basis coefficients of the same function. Second, for smooth func-

tional data, the coefficient sequence in `2 is often sparse (e.g., quickly decays245

to zero), thus various compression techniques can be applied to zero-out the

small coefficients or truncate the tails of the coefficient sequence. Third, the

one-to-one mapping between l2 and L2(T ) allows us to freely transform poste-

rior samples of the regression coefficient functions between the two spaces, so

that posterior inferences can be performed directly in the data domain.250

Under model (3), we need to parameterize the distributions for the 2-d ar-

rays: D, B∗, U∗, and E∗. Since the original data are assumed to be mul-

tivariate Gaussian processes, these 2-d arrays are discrete Gaussian processes.

If we assume a separable correlation structure, the correlations of a 2-d array

can be characterized by the Kronecker product of the between-row correlation255

and between-column correlation. Even with the whitening property of the basis

expansion, characterizing the correlation of such 2-d arrays is still challenging,

since we usually do not have a priori knowledge about the inter-functional cor-

relation. We therefore propose a second stage transformation—an orthogonal

linear transformation (a rotation) that transforms model (3) to a new coordinate260

system determined by the PC directions of D.

Specifically, let V denote a 2-d array (with infinite number of rows and

columns), for which the columns are the eigenvectors of DTD. We obtain the

PC scores by projecting rows of D on the eigenvectors, i.e., D̃ = DV . Each

row of D̃ consists of PC scores of the corresponding row in D. By applying the265

same rotation/projection to B∗,U∗,E∗, we obtain B̃ = B∗V , Ũ = U∗V , and

Ẽ = E∗V . Since the rotation operator V is again a linear operator, model (3)

is equivalent to

D̃ = XB̃ +ZŨ + Ẽ. (4)

In the above model, D̃ = (d̃ik), i = 1, . . . , N, k = 1, 2, . . ., where d̃ik denotes

the kth (uncentered) PC score for the row i of D. Note that D̃, B̃, Ũ , Ẽ have270
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the same dimensions as their counterparts in model (3). Since V is orthogonal

(V V T = V TV = I), the second-stage transformation is also invertible. Due to

the Gaussian assumption of {Y i}, the PC scores of D (i.e., columns of D̃) are

approximately independent of each other. Therefore we can make a reasonable

assumption that the columns of D̃, B̃, Ũ , Ẽ in model (4) are independent of each275

other. This facilitates a much simpler prior setup and calculation, as elaborated

in Section 3.3.

3.3. Model setup, prior specification, and posterior inference

We extract the kth column of D̃, B̃, Ũ , Ẽ, respectively, and write model (4)

as280

D̃k = XB̃k +ZŨk + Ẽk, k = 1, 2, . . . (5)

where D̃k and Ẽk are N × 1 vectors, B̃k is of size A × 1, and Ũk is M × 1.

Denoting the ath entry of B̃k by B̃ak, we set the random effect and residual

distributions as well as the priors for fixed effects as

Ẽk ∼ N(0, skIN ), Ũk ∼ N(0, qkIM ), B̃ak ∼ γakN(0, ζak) + (1− γak)δ0,

sk ∼ IG(ask, b
s
k), qk ∼ IG(aqk, b

q
k), ζak ∼ IG(aζk, b

ζ
k), γak ∼ Bern(πak),

and set πak ∼ Beta(aπk , b
π
k ). These distributions are assumed to be independent

across the column index k. The prior for B̃ak takes the “spike-and-normal-285

slab” form, with the spike part being δ0, the point mass at zero. This prior

enables adaptive shrinkage for the fixed effect, i.e., smaller components of B̃

are encouraged toward zero while large components are retained, resulting in a

sparse estimate of B̃. Under the above model setup, posterior sampling can be

performed using a Markov chain Monte Carlo (MCMC) algorithm. Details of290

the MCMC algorithm and methods for estimating the initial values and setting

prior parameters are described in the supplementary materials.

One practical issue involved in model fitting and calculation is how to deal

with the infinite-dimensional arrays in model (3) and model (4). While theoreti-

cally infinite-dimensional, the dimensions of the 2-d arraysD and D̃ in practical295
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calculations are constrained by the number of measurement points and sample

size. For example, the number of bases one can use to expand a curve is often

smaller than or equal to the number of measurement points of the curve, and the

number of positive eigenvalues one can obtain in the PCA of D is less than the

smaller dimension of D. In most applications, the functional data are smooth300

and densely measured, so that the number of measurement points is usually

much higher than the sample size. In these situations, we often choose to com-

press the basis coefficients so that the close-to-zero values are replaced by zeros,

or truncate the coefficients sequence when the basis coefficients decay monotoni-

cally. Compression and truncation have the effects of smoothing (removing high305

frequency noise) and reducing the dimension of functional data. They are often

preferred for high-dimensional problems. In this paper, we recommend keeping

the two-stage transformation “lossless” or “near-lossless”, meaning that we only

perform moderate truncation or compression so that nearly all essential infor-

mation is retained after the transformation. This can be achieved by controlling310

the fraction of information retained (FIR). For example, during the basis ex-

pansion at stage one, we can truncate the sequence dji at τj so that the ratio

Rij =
∑τj
k=1 d

2
ijk/

∑
k d

2
ijk is greater than or equal to a pre-specified threshold

(e.g., 0.999) for all i = 1, . . . , N and j = 1, . . . , p. In the PCA at stage two, we

simply truncate the PC scores at τ so that Rpc =
∑τ
k=1 λ̂k/

∑
k λ̂k is greater315

than or equal to a pre-specified threshold (e.g., 1-1e-6). Here, λ̂k denotes the

kth estimated eigenvalue of DTD.

3.4. Posterior inference

The MCMC algorithm for the proposed model yields posterior samples of

the model parameters, from which inferential summaries can be constructed.320

The posterior samples for B̃ and Ũ can be transformed back into the data

space using the two-stage inverse-transform: B = B̃V TΨ and U = ŨV TΨ,

yielding posterior samples for B and U in the data space model (2). The

posterior samples can also be computed for any function of the parameters, such

as the contrast effects between two groups. For example, in the fluorescence325
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spectroscopy data analysis, a key inferential objective is to identify locations

on the EEM measurements that are differentially expressed across the normal

samples and pre-cancer samples. Let X denote a N × 2 matrix with the ith

row being (1, 0) if measurement i is from the pre-cancer group and (0, 1) if

from the normal group. Then the corresponding coefficient B = (B1, B2)T330

contains the mean effect for the pre-cancer group (B1) and the normal group

(B2), respectively. Based on posterior samples of B, the contrast effect between

the two groups can be calculated by C = B2 − B1 for each posterior sample.

We can then identify significant nonzero regions on C. These regions reflect

significant differences between the two groups.335

Flagging Regions. Most existing methods rely on pointwise credible bands

to identify significant local regions. They first construct the 95% credible in-

terval on each grid separately, then flag a position (a grid point) as signif-

icantly nonzero if the credible band does not include zero in that position.

However, since pointwise credible bands do not adjust for joint coverage prob-340

abilities, inference based on these approaches fails to adjust for the family-wise

(experimental-wise) error rate in the inherent multiple testing problem, which

may lead to high false discovery rates (Crainiceanu et al., 2012). In this paper,

we flag regions using two approaches with global coverage properties: a thresh-

olding method based on the simultaneous band scores (SimBaS) and a Bayesian345

false discovery rate (BFDR) method.

1. Simultaneous band scores (SimBaS). To detect regions that are signifi-

cantly nonzero on a contrast effect C = (C1, . . . , Cp), we first generate simul-

taneous credible bands (SCBs) for the multivariate functional object C following

Ruppert et al. (2003). The SCB takes the form
[
Ĉ −mα ŝd{C}, Ĉ +mα ŝd{C}

]
,350

where Ĉ is the sample mean, ŝd{C} is the sample standard deviation, and mα

is the (1−α) sample quantile of maxt

{
|C(g) − Ĉ|/ŝd{C}

}
, g = 1, . . . ,H. Here,

g is the index for (and H is the total number of) posterior samples, and t de-

notes the discrete grid of the domain T on which the posterior samples were

evaluated. We then calculate the SCB for a range of α values, and define the355

SimBaS at each grid point t ∈ t as the smallest α for which the 100(1 − α)%
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SCB excludes zero at that point. This measure was introduced by Meyer et al.

(2015). Given the joint coverage properties of the SimBaS, we can compute

a global Bayesian p-value (GBPV) as mint{SimBaS(t)}, which can be used to

test the global functional null hypothesis that H0 : C ≡ 0 vs. Ha : Cj 6≡ 0 for360

some j. If GBPV< α, we conclude that there is some difference between the

two groups, and can subsequently localize these effects by flagging locations as

strongly significant if the corresponding SimBaS(t) is less than α.

2. Bayesian false discovery rate (BFDR). At times, we are interested in

identifying locations at which the contrast effect C is greater than some pre-365

specified practical effect size δ. To do this, we first calculate the pointwise

posterior probability p̂j(t) ≈ Pr(|Cj(t)| > δ | Data) from the posterior samples

for j = 1, . . . , p. The values {1− p̂j(t)} can be interpreted as an estimate of the

local FDR at location t for functional variable j, if we consider a discovery to be

a location where the effect is in fact greater than δ in magnitude. We can then370

find a threshold φα for {p̂j(t)}, for example corresponding to a pre-specified

expected FDR (averaged across all locations and all j) of α, and flag locations

with p̂j(t) > φα as being significantly greater than δ. Similar strategies have

been adopted by Newton et al. (2004) and Morris et al. (2008).

Comparing the two methods, we see that the BFDR method uses the weaker375

FDR criterion but requires the pre-specification of a threshold δ, whereas the

SimBaS analysis corresponds to EER considerations but does not require spec-

ification of an effect size of interest, δ.

Discriminant Analysis. Besides flagging significant local regions, the pro-

posed MFMM framework also facilitates discriminant analysis through posterior380

predictive calculation. We use the symbol † to denote data from a new observa-

tion. Specifically, let D̃
†

denote a row vector containing the PC scores for the

new observation, calculated using the eigenvectors estimated in the training set.

Let c† ∈ {1, . . . , S} denote the class label that corresponds to the design vector

X†. For example, in the EEM case, we can set c† = 1 if the design vector for385

the new observation is X† = (1, 0), which corresponds to the pre-cancer class,

and set c† = 2 if X† = (0, 1), which corresponds to the normal class. In this
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case, S = A = 2, where A is the number of covariates in model (1). In general,

S can be less than A, meaning that not all covariates need be relevant to the

classes.390

A discrimination analysis involves predicting c† using posterior samples ob-

tained from the training procedure. In particular, we predict by calculating the

posterior predictive odds (PPO) of c† = r versus c† = 1, i.e.,

PPO(r) =
f(D̃

†
| c† = r, D̃,X,Z)

f(D̃
†
| c† = 1, D̃,X,Z)

· Pr(c† = r)

Pr(c† = 1)
, r ∈ {2, . . . , S}, (6)

where Pr(c† = r) and Pr(c† = 1) are the pre-specified prior probabilities for

the class designation, and f(D̃
†
| c†, D̃,X,Z) is the posterior predictive den-

sity for the new observation, calculated by
∫
f(D̃

†
| c†,Θ) f(Θ|D̃,X,Z) dΘ

using Monte Carlo integration. Here, Θ denote all model parameters and

f(Θ|D̃,X,Z) is the posterior density of the parameters in the training pro-

cedure. When calculating the predictive density f(D̃
†
| c†,Θ), we need to in-

tegrate out the random effect term Z†U † since the random effect for the new

observation cannot be estimated from the training procedure. This integration

can be done analytically using the properties of Gaussian random variables.

The PPO is generally applicable to the binary or multiple-class case. With

the odds computed using equation (6), the posterior predictive probabilities for

class designations can be determined straightforwardly using

Pr(c† = r | D̃
†
,X†, D̃,X,Z) =


PPO(r)

1+
∑S

v=2 PPO(v)
, if r = 2, . . . , S.

1
1+

∑S
v=2 PPO(v)

, if r = 1.

4. Simulation study

4.1. Simulation 1. Assess estimation accuracy and discrimination performance395

We designed a simulation study to demonstrate the performance of the pro-

posed MFMM approach. In particular, we want to assess the benefit of jointly

modeling multivariate functional data versus independently modeling each func-

tional variable. To capture realistic inter- and intra-function correlations, we
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based our simulation upon the real EEM data described in Section 2, i.e., treat-400

ing the EEM data as the reference data. We generated simulated data by first

fitting MFMM to the reference EEM data using model (2). We set the design

matrix X by following a cell mean design, i.e., the ith row of X equals (1, 0)

if the ith EEM measurement is from a pre-cancer sample and (0, 1) if from the

normal sample. Correspondingly, the elements in B = (B1, B2)T denote the405

mean of the pre-cancer group and normal group, respectively. Since the real

EEM data do not contain multiple batches, the ZU term is omitted in the

reference run.

From the reference run, we obtained the estimated values for B̃ and {sk}

in the transformed domain. We then simulated data, treating the estimated410

B̃ as the true fixed effect. We simulated the random effect Ũ and residuals Ẽ

based on the normal distributions described in Section 3.3, using pre-specified

variance components {qk, sk}. Here, we specify qk = r1ŝk and sk = r2ŝk, where

ŝk is the posterior mean estimated from the reference run and r1, r2 ∈ (0, 1) are

tuning parameters that control the signal to noise ratio (SNR). Specifically, we415

set r1 = 0.075, r2 = 0.025 so that the resulting SNR, defined by the ratio (in

absolute value) between XB̃ and ZU +E, component-wise, has a mean value

around 5. In this simulation, we set the design matrix X to be identical to

that of the reference EEM data, and set Z so that the samples are randomly

assigned to M = 5 batches. In order to test the predictive performance, we sim-420

ulated one training set (with 534 EEM observations) and one test set (260 EEM

observations) independently using the same parameter setup. We repeated the

above simulation procedure 20 times and summarized the results by averaging

the statistics calculated from each simulation.

The simulated data and the effect of two-stage transformation are demon-425

strated in Figure 2, where panel (a) shows simulated samples for the two groups

(10 samples each) as concatenated spectral curves. Unlike in Figure 1 (c), here,

we use the x-axis to label the excitation wavelengths of the spectral curves.

Such relabeling helps distinguish which segment of the concatenated curve corre-

sponds to which spectrum. We performed a two-stage transformation, a wavelet430
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Figure 2: Simulated data: (a) Simulated samples plotted as concatenated spectral curves

for the pre-cancer group (red) and the normal group (blue); (b) image plot of the sample

correlation of the concatenated spectral curves; (c) sample correlation in wavelet domain; (c)

sample correlation of the PC scores after the two-stage transformation. Here, the x-axis of

(a) and both axes of (b)-(c) have been relabeled by the excitation wavelengths (wls) of the

spectral curves.
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transformation followed by a PCA on the concatenated wavelet coefficients, and

plotted the sample correlation before and after each stage of the transformation

in Figure 2 (b)-(d). Panel (b) shows the sample correlation of the concatenated

spectral curves before the two-stage transformation. It demonstrates high intra-

and inter-function correlations (with average correlation around 0.87). After the435

first-stage wavelet transformation, the sample correlation of the concatenated

wavelet coefficients is reduced substantially (with average value around 0.004),

as shown in Figure 2 (c). Yet high correlation blocks are still observed for cer-

tain wavelet coefficients. In Figure 2 (b)-(c), we again relabeled the x-axis and

y-axis using the excitation wavelengths to help distinguish which correlation440

block corresponds to which spectral curves. After performing PCA of the con-

catenated wavelet coefficients, the PC scores become nearly independent (with

average correlation around 5e-16), as shown in Figure 2 (d). Furthermore, since

the two-stage transformation is invertible, we are able to reconstruct the orig-

inal data from the PC scores, which gives the maximum reconstruction error445

4.4e-4.

Evaluation criteria. We applied the proposed MFMM model to the simu-

lated dataset. To demonstrate the benefits of joint modeling, we also applied a

functional mixed model (FMM) with the same model setup (i.e., the same two-

stage transformation, parameter setup, and prior setup) to each of the functional450

variables independently. We collected the posterior samples from both scenar-

ios (MFMM and FMM), and calculated six summary statistics to evaluate the

estimation performance. The statistics included

IMSE =
1

Ap

A∑
a=1

p∑
j=1

||B̂aj(t)−Baj(t)||2

||Baj(t)||2
, IPVar =

1

Ap

A∑
a=1

p∑
j=1

1
H

∑H
g=1 ||B

(g)
aj (t)− B̂aj(t)||2

||Baj(t)||2
,

IWidth = 1/(Ap)
∑A
a=1

∑p
j=1 ||ŵBaj

(t)||2/||Baj(t)||2, the mean coverage prob-

ability of the 95% SCB for each functional variable in B (denoted by CPrscb),455

as well as the coverage probability of the 95% aggregated SCB for B (denoted

by CPragg), which adjusts for the EER of all 16 functional variables in B simul-

taneously. In the above formulae, || · || denotes the L2 norm, H is the number

of posterior samples, ŵBaj
(t) is the width of the 95% pointwise credible band

of Baj(t) (the jth component of Ba) estimated on the grid Tj . The IMSE sum-460
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Table 1: Summary statistics of simulation 1: integrated mean squared error (IMSE), inte-

grated posterior variance (IPVar), integrated width of 95% credible interval (IWidth), cov-

erage probability of the 95% SCB (CPrscb) and the 95% aggregated SCB (CPragg) for B

and U , averaged across 20 repeated simulations; the area under the ROC curve (AUC) when

predicting class labels of the test set, and extended AUC calculated when constraining 1-

specificity< 10% (AUC0.1).

B Prediction

Model IMSE IPVar IWidth CPrscb CPragg AUC

MFMM 0.016 0.014 0.197 0.950 0.978 0.966

FMM 0.031 0.013 0.187 0.928 0.969 0.951

U

IMSE IPVar IWidth CPrscb CPragg AUC0.1

MFMM 3.021 3.020 42.472 0.951 0.978 0.874

FMM 20.199 4.820 66.466 0.930 0.970 0.789

marizes the deviation of the posterior mean about the truth, and the IPVar

summarizes the variability about the posterior mean.

Simulation results. We applied MFMM and FMM to each of the 20 sim-

ulated data sets. In each simulation, we ran 5000 MCMC iterations and treated

the first 3000 iterations as the burn-in period. We monitored the convergence of465

the MCMC samples; see Section 7 and the supplementary materials for details.

We obtained posterior samples for B̃ and Ũ in the transformed PC domain and

inverse-transformed them to the data domain. During the fittings of both the

MFMM and FMM, we performed discrete wavelet decomposition in stage one

with no compression, and performed a near lossless PCA in stage two so that470

the truncation parameter τ (or {τj} in the FMM case) is chosen to retain at

least 99.99% of the total variation. Based on the posterior samples, we calcu-

lated the summary statistics for B and U . We averaged these statistics across

all 20 repetitions and listed them in Table 1.

From Table 1, we see that MFMM resulted in systematically lower IMSE and475

higher coverage probabilities (CPrscb and CPragg) for B and U than the FMM

approach. This implies that, when functional variables are correlated, modeling

multivariate functional data jointly using MFMM may lead to smaller estimation
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Figure 3: Simulation 1: posterior estimation of the intra- and inter-function correlation for

the group mean B1 using MFMM (a) and FMM (b). Here, the axes have been relabeled by

the excitation wavelengths (wls) of the spectral curves similarly to Figure 2 (b)-(c).

errors for the fixed and random effect, as well as more reliable confidence bands.

For the posterior variance, MFMM provides comparable IPVar and IWidth480

for B but considerably smaller IPVar and IWidth for U . This suggests that,

compared to the FMM approach, the MFMM approach has evidently improved

the estimation accuracy of the random effect U .

In addition to the summary statistics, in Figure 3 we demonstrate the pos-

terior estimation of the intra- and inter-function correlation for the group mean485

B1 using MFMM and FMM. In Figure 3, similarly to Figure 2 (b)-(c), we rela-

beled the axes to indicate which block corresponds to which spectral curve using

the excitation wavelengths of each spectral curve. Figure 3 shows that joint

modeling using MFMM resulted in high intra- and inter-function correlations

for the estimated fixed effect B1 (with average correlation 0.81), whereas the490

independent modeling approach using FMM only retained high intra-function

correlation, and resulted in a generally lower inter-functional correlation (aver-

age value 0.26).

Besides estimating parameters, we also applied discriminant analysis to pre-

dict the class labels (pre-cancer versus normal tissue) of the test data. To sum-495

marize the prediction results, we used two statistics: the area under the receiver

operating characteristic (ROC) curve, denoted by AUC, and a modified AUC0.1
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statistic. To calculate the AUC, we first generated the ROC curve by plotting 1-

Specificity (x-axis) versus Sensitivity (y-axis) for all possible thresholds applied

to the predictive probabilities for the test data. The AUC is the area under500

the ROC curve computed using numerical integration. AUC takes values in

[0, 1], with higher values implying better classification performance. The mod-

ified AUC0.1 statistic focuses on the lower left portion of the ROC curves. It

describes the classification performance while controlling the false positive rate

to be less than 10% (which is often prefered in medical practice). The AUC0.1505

is re-scaled (multiplied by 10) so that it also takes values in [0, 1]. We averaged

the two summary statistics across the 20 repeated simulations; results are listed

in the last column in Table 1. From Table 1, we see that the MFMM approach

resulted in slightly higher AUC and considerably higher AUC0.1 than the FMM

approach. This indicates that joint modeling using MFMM has the potential to510

improve the discrimination power over that obtained from independent model-

ing using FMM.

4.2. Simulation 2. Assess the power of the global test for contrast effects

Motivated by the fact that a multivariate test may be more powerful when

the variables to be tested are correlated, we assessed whether MFMM results515

in higher power for hypothesis testing. We considered the same design as in

simulation 1, and aimed to assess the power of an omnibus test for the contrast

effect C, i.e., H0 : C ≡ 0 versus H1 : Cj(t) 6= 0 for at least one j. Here,

C = B2−B1. According to the definition, the power of a hypothesis test is the

probability of rejecting H0 when H1 holds. Therefore, to compare the power,520

we simulated data under H1. To facilitate comparable power (power that is not

always 1 in all cases), we simulated data by controlling the true contrast effect

based upon simulation 1. Specifically, we adopted the same B1 estimated from

the reference run, but let B2 = B1 + rC, where C is the mean contrast effect

estimated in the reference run. We set r = 0.15 so that the true contrast effect525

was fairly small, thus there as a higher chance of accepting H0. This setup

would lead to power with values lower than 1.
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We simulated 1000 datasets following the same procedure as in simulation 1.

For each simulated dataset, we applied both MFMM and FMM, and collected

the posterior samples of C. We then adopted the SimbaS approach on the grid530

t of C while controlling the EER to be less than 0.05. Based on SimBaS, we

calculated the GBPV and rejected H0 when GBPV< 0.05. We finally calcu-

lated the power as the frequency of successfully rejecting H0 across the 1000

repetitions. Results show that the SimBaS-based omnibus test gives power of

0.85 for the MFMM approach and 0.69 for the FMM approach. This suggests535

that MFMM can improve the power of testing the global contrast effect.

5. Analysis of fluorescence spectroscopy data

We applied MFMM to the fluorescence spectroscopy data using a design

similar to that of the reference run in simulation 1. In particular, the design

matrix X is a 534 × 2 binary matrix following the cell mean design, and the540

corresponding regression coefficient B = (B1, B2)T contains the group means

for the pre-cancer and normal samples. The random effect term ZU is omitted

due to the absence of a batch/group effect. Our goal for this analysis is two-fold:

to characterize systematic differences between pre-cancer and normal samples,

and to predict disease status using cross-validation.545

We applied MFMM to the full dataset that contains 143 pre-cancer sam-

ples and 391 normal samples. In the model fitting, we adopted a two-stage

transformation—a lossless discrete wavelet transform (with no wavelet compres-

sion) followed by PCA of the concatenated wavelet coefficients. We truncated

the resulting PC scores by constraining that FIR≥1-1e-6. We ran 5000 MCMC550

iterations and treated the first 3000 iterations as the burn-in period. The con-

vergence of the MCMC samples has been monitored, and more details can be

found in Section 7 and the supplementary materials. The running time for 5000

MCMC iterations was around 8 minutes for the full data set. Based upon the

posterior samples of B, we calculated the posterior samples of the contrast ef-555

fect between normal samples and pre-cancer samples by C(g) = B
(g)
2 −B

(g)
1 for

24



(a) Contrast Effect−−SimBaS

excitation wls (x10 nm)

 

 

33 35 37 39 41 43 45 47

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Contrast Effect−−BFDR (delta=0.02)

excitation wls (x10 nm)
33 35 37 39 41 43 45 47

0

0.02

0.04

0.06

0.08

0.1

0.12

(c) Contrast Effect EEM−−SimBaS

emission wls (nm)

ex
ci

ta
tio

n 
w

ls
 (

x1
0 

nm
)

430 470 510 550 590 630 670
33

35

37

39

41

43

45

47

(d) Contrast Effect EEM−−BFDR (delta=0.02)
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Figure 4: The posterior mean of the contrast effect C plotted as a concatenated curve, flagged

by SimBaS (a) and BFDR (b), and the posterior mean of C plotted as an EEM image,

flagged by SimBaS (c) and BFDR (d). In (a) and (b), the shaded gray regions are the 95%

SCB calculated by adjusting EER across all 16 curves.

g = 1, . . . ,H.

We applied the SimBaS approach to the posterior samples of C to identify

significant nonzero regions, and applied the BFDR (δ = 0.02) approach to

identify regions that are greater than 0.02, using α = 0.05 as the significance560

threshold in both cases. From SimBaS, we found the GBPV to be 0.004. This

implies that overall, there were some differences between the normal and pre-

cancer samples. We demonstrate the posterior mean of C and the flagged regions

in Figure 4 using both concatenated curve plots and EEM plots. From Figure 4

(a) and (b), we see that the contrast effect C is mostly positive, indicating that565

the normal samples tend to have higher intensity than the pre-cancer samples.

Overall, the SimBaS and the BFDR approach identified similar regions: both

flagged the region around excitations 330 − 380 nms and emissions 410 − 490

nms. Since the SimBaS is targeted to detect nonzero regions, whereas BFDR is

targeted to identify regions with |C| > 0.02, the SimBaS flagged more significant570
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locations than the BFDR. For example, SimBaS flagged regions of curves at

excitations 390, 400 and 480 nms; whereas these regions were found to be non-

significant by the BFDR.

To assess the performance of MFMM on discriminating disease status, we

re-fit the data using a 4-fold cross-validation. Specifically, we randomly split the575

full dataset into four blocks while reserving the proportion of disease and normal

samples within each subset. We then iterated the training–predicting procedure

by first training MFMM using three of the four blocks and then predicting the

class labels for the remaining block. The resulting posterior predictive probabil-

ities for disease status were treated as prediction scores, with higher values in-580

dicating higher chances of belonging to the disease class. Based on these scores,

we plotted the empirical ROC curve (Figure 5). The corresponding AUC for

this discrimination analysis is 0.65. If we make decision by choosing a threshold

to maximize the sum of sensitivity and specificity, we achieve sensitivity of 0.69

and specificity of 0.59, with a misclassification rate of 38%. This discrimination585

result is close to but not as high as the result reported by Zhu and Cox (2009).

A sensible explanation is that this study is based on data collected from a fixed

tissue type and from patients with a fixed menopausal status; therefore, the

variables of tissue type and menopause statuses were not used as predictors in

classification.590

The reasons for excluding samples from another tissue type (tissue type

columnar) and from patients with other menopausal statuses (peri- and post-

menopause) are as follows: (1) No samples were available for columnar tissue

for the pre-cancer group, and only three samples were available for patients

with per- and post-menopausal status in the pre-cancer group. With too few595

samples, we can hardly provide a reliable estimate of the tissue or menopausal

effects using MFMM. (2) Data from columnar tissue and patients with peri-

or post-menopausal status were heavily unbalanced across the normal group

and the pre-cancer group. Therefore, the tissue type and menopausal status

may confound the disease status in the training procedure, causing spurious600

classification results. For example, if all samples with columnar tissue type
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Figure 5: Plot of empirical ROC curve based on 4-fold cross validation.

are from the normal group, purely classifying samples with columnar tissue as

normal would provide a better-than-random-guess result. On the other hand,

we want to use only disease-related information from the EEM data, rather

than information on the unbalanced design, to classify samples. Nevertheless,605

when the sample size is sufficiently large and samples are balanced across the

two classes, including other covariates may improve the overall classification

performance.

In summary, our analysis of the fluorescence spectroscopy data revealed a

major local region around excitations 330 − 380 nms and emissions 420 − 480610

nms on the EEM that reflects differences between the normal and pre-cancer

samples. In particular, normal samples tend to have significantly higher in-

tensity than the pre-cancer samples in this region. If desired, we can adjust

the δ parameter in the BFDR analysis to identify locations with other levels

of differences. The flagged regions may serve as biomarkers for future disease615

assessment and diagnosis.
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6. Sensitivity analysis

It is of interest to study whether the results presented in Section 5 are sen-

sitive to different model choices or parameter settings. For example, whether

using a basis other than wavelets or different prior parameters would affect the620

posterior estimates and region detection outputs. To answer these questions, we

repeated several analyses under different model choices using the real EEM data.

These analyses include: (i) Using cosine basis in the first-stage transfor-

mation. We re-fit MFMM by replacing the wavelets by cosine basis expansion.

The cosine basis takes the form {φ1(t) = 0, φk =
√

2 cos((k− 1)πt), k ≥ 2}. (ii)625

Using a smaller variance when setting the Inverse-Gamma and Beta

priors. In our original analysis in Section 5, we set parameters for the inverse-

Gamma and Beta priors by letting the mode of these distributions be equal to

their initial values and letting the variance be a pre-specified large value (i.e.,

103 for the inverse-Gamma and 0.06 for the Beta priors). In this sensitivity630

analysis, we adjusted the prior parameters by reducing the prior variance for

inverse-Gamma to 10 and reducing the prior variance for Beta to 0.04. (iii)

Using a larger variance when setting the inverse-Gamma and Beta

priors. We repeated analysis (ii) and increased the prior variance for inverse-

Gamma to 106 and increased the prior variance for Beta to 0.08.635

The results of the sensitivity analysis are plotted similarly to Figure 4 (a)-

(b) for each of the cases and are demonstrated in the supplementary materials.

These analyses show that the posterior mean, the 95% SCB, and the regions

flagged by the BFDR (δ = 0.02) approach are nearly identical across all analy-

ses. The flagged locations using the SimBaS approach also demonstrate similar640

patterns, with slight variations appear at a few low-intensity regions on ex-

citation curves at 380-390 and 460-480 nms. This is not surprising because

SimBaS aims to flag regions on C that are significantly nonzero, and locations

with close-to-zero intensities on a continuous curve are hard to determine. In

summary, these sensitivity analyses indicate that our posterior estimation and645

region detection results are not sensitive to different basis choices and different
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parameter settings for the inverse-Gamma and Beta priors.

7. Discussion

To jointly model multiple functional variables, we have proposed a MFMM

approach that regresses multivariate functional data on a set of scalar covariates650

while flexibly accounting for potential multi-level data structures. We fit the

model after performing a convenient two-stage transformation. We provided

a fully Bayesian approach to obtain the posterior samples in the transformed

domain and performed posterior inference in the original data space after inverse

transforming the posterior samples. Our approach produces functional tests655

to flag local regions of the EEMs while accounting for multiple testing using

the FDR or EER criterion. It also facilitates a discrimination analysis of new

observations.

The proposed Bayesian approach requires running an MCMC algorithm to

obtain posterior samples. As other MCMC-based analyses, the convergence660

of the MCMC samples needs to be monitored and tested. We monitored the

behavior of the posterior samples by checking the trace plots, the autocorre-

lation plots, and calculating the effective sample size of the retained samples.

We tested the convergence of the chains by calculating Geweke’s Z-statistics

(Geweke, 1992) based on the samples after burnin. These diagnostics were per-665

formed for both the simulation and the real data analysis. Summary plots and

more detailed discussions are available in the supplementary materials.

The fluorescence spectroscopy EEM data represent multivariate functional

data with different supports. Besides the EEM data, the proposed MFMM

can be applied to other multivariate functional data with potentially different670

dimensions and/or interpretations, such as various types of neuroimaging, ge-

nomic, proteomic and engineering data. For example, we can use MFMM to

jointly model 1-d EEG signals and 3-d MRIs. When two functional variables

are of different dimensions, one needs to apply different basis representations

at the first stage of the transformation. For example, 1-d, 2-d, or 3-d wavelets675
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can be used to represent different functional variables. Other bases, such as

splines, Fourier series, or principal components, also have higher dimensional

counterparts, and thus can be used just as well. At the second stage, while we

have proposed PCA for the purpose of de-correlation and dimension reduction,

one may consider other transformations with similar characteristics.680

We have proposed a Bayesian approach for inference. It is possible to ap-

ply frequentist approaches to estimate parameters in model (4) by using, for

example, the restricted maximum likelihood (REML) and the best linear unbi-

ased estimation prediction (BLUP) methods as described in Searle et al. (1992).

However, the point estimates and their uncertainties are hard to be interpreted685

in the transformed space. Therefore, if using frequentist approaches, one may

need to perform bootstrapping and characterize the uncertainty of the estimated

parameters after inverse-transforming the bootstrapped estimates back to the

original data domain.

We have assumed Gaussian distributions for the random effects and residu-690

als in the proposed MFMM. Extensions that incorporate heavier tailed distri-

butions can be performed following the work of Zhu et al. (2011). Furthermore,

in addition to the multi-level structure, we can incorporate between-function

spatial or temporal correlations in the residual terms and/or the fixed effect

coefficient functions, following strategies similar to Zhang et al. (2014) and Zhu695

et al. (2016b).

Algorithms used in this paper are coded using Matlab and C. In the sup-

plementary material, we have provided Matlab code that calls a C executable

for implementing the proposed approach. We demonstrate how to use this code

through an example that runs simulation 1. In case of higher dimensional func-700

tions, especially when the number of measurement points is more than O(104),

the scalability of our algorithm can be improved substantially by using both

basis coefficient compression and PC truncation. Depending on the characteris-

tics of the functional data and the chosen basis, speed improvements of 20-fold

or more are possible with moderate compression. Finally, for extremely high705

dimensional datasets such as neuroimaging and genomic data, the independence
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assumption across columns of model (4) enables us to perform Bayesian infer-

ence in parallel, using either a graphics processing unit (Sanders and Kandrot,

2011) or other parallel programming techniques.
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Aue, A., Dubart Norinho, D., Hörmann, S., 2015. On the prediction of station-

ary functional time series. Journal of the American Statistical Association720

110, 378–392.

Backenroth, D., Goldsmith, J., Kitago, T., Krakauer, J., 2016. Modeling het-

erogeneity in motor learning using heteroskedastic functional principal com-

ponents. abstract, JSM 2016 .

Baladandayuthapani, V., Mallick, B.K., Hong, M.Y., Lupton, J.R., Turner,725

N.D., Carroll, R.J., 2008. Bayesian hierarchical spatially correlated functional

data analysis with application to colon carcinogenesis. Biometrics 64, 64–73.

Castanedo, F., 2013. A review of data fusion techniques. The Scientific World

Journal 2013.

Chang, C.Y., Chang, C.C., Hsiao, T., 2013. Fluorescence intrinsic characteriza-730

tion of excitation-emission matrix using multi-dimensional ensemble empirical

mode decomposition. Int. J. Mol. Sci. 14, 22436–22448.

31



Chang, S.K., Follen, M., Malpica, A., Utzinger, U., Staerkel, G., Cox, D., Atkin-

son, E.N., MacAulay, C., Richards-Kortum, R., 2002. Optimal excitation

wavelengths for discriminantion of cervical neoplasia. IEEE Transactions on735

Biomedical Engineering 49, 1102–1110.

Crainiceanu, C.M., Staicu, A.M., Ray, S., Punjabi, N., 2012. Bootstrap-based

inference on the difference in the means of two correlated functional processes.

Statistics in Medicine 31, 3223–3240.

Delicado, P., Giraldo, R., Comas, C., Mateu, J., 2010. Statistics for spatial740

functional data: some recent contributions. Environmetrics 21, 224 – 239.

Fan, Y., James, G.M., Radchenko, P., 2015. Functional additive regression.

Ann. Statist. 43, 2296–2325.

Geweke, J., 1992. Evaluating the accuracy of sampling-based approaches to the

calculation of posterior moments. Bayesian Statistics 4 .745

Giraldo, R., Delicado, P., Mateu, J., 2010. Continuous time-varying kriging for

spatial prediction of functional data: An environmental application. Journal

of Agricultural, Biological, and Environmental Statistics 15, 66–82.

Goldsmith, J., Crainiceanu, C.M., Caffo, B., Reich, D., 2012. Longitudinal

penalized functional regression for cognitive outcomes on neuronal tract mea-750

surements. J. R. Stat. Soc. Ser. C Appl. Stat. 61, 453–469.

Goldsmith, J., Zipunnikov, V., Schrack, J., 2015. Generalized multilevel

function-on-scalar regression and principal component analysis. Biometrics

71, 344–353.

Greven, S., Crainiceanu, C., Caffo, B., Reich, D., 2010. Longitudinal functional755

principal component analysis. Electronic Journal of Statistics 4, 1022–1054.
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