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Abstract We consider a family of parameter estimation problems involving func-
tional data. In these problems, the relationship between functional data and the
underlying parameters cannot be explicitly specified usinga likelihood function.
These situations often occur when functional data arises from a complex system
and only numerical simulations (through a simulator) can beused to describe the
underlying data-generating mechanism. To estimate the unknown parameters under
these scenarios, we introduce a wavelet-based approximateBayesian computation
(wABC) approach that is likelihood-free and computationally scalable to functional
data measured on a dense, high-dimensional grid. The proposed approach relies on
near-lossless wavelet decomposition and compression to reduce the high-correlation
between measurement points and the high-dimensionality. We adopt a Markov chain
Monte Carlo algorithm with a Metropolis-Hastings sampler to obtain posterior sam-
ples of the parameters for Bayesian inference. To avoid expensive simulations from
the simulator in the approximate Bayesian computation, a Gaussian process surro-
gate for the simulator is introduced, and the uncertainty ofthe resulting sampler is
controlled by calculating the expected error rate of the acceptance probability. We
motivate our approach and demonstrate its performance using the foliage-echo data
generated by a sonar simulation system. Our Bayesian posterior inference provides
the joint posterior distribution of all underlying parameters, which is otherwise in-
tractable using existing analytical methods.
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1 Introduction

Functional data, such as signals, surfaces, and images, arefrequently encountered
in many scientific disciplines. The increased prevalence ofsuch data promotes the
development offunctional data analysis [20, 7, 11, 29]. While considerable efforts
have been made to the preprocessing [19, 25], estimation [21, 34, 33], and regression
analysis [5, 4, 36, 24, 16] of functional data, existing approaches primarily rely on
linking functional observations with the unknown parameters via a likelihood or an
objective function. Many applications, however, involve inferring parameters when
such linkage is implicit or difficult to specify. In this paper, we consider a family of
parameter estimation problems under such situations.

Figure 1 provides a conceptual demonstration of the estimation problems we
consider. The black box represents an unknown complex system that takes the pa-
rameterθ as input and produces functional observations{Yi(t)} as outputs. Our
goal is to estimate the underlying parameterθ based on the observed functional
outputs. If the relationship between{Yi(t)} andθ is known, for example, if{Yi(t)}

Fig. 1 A conceptual demonstration of the parameter estimation problems we consider.

are independent and identically distributed Gaussian processes with mean zero and
a covariance kernel that depends onθ , we can estimateθ through maximum like-
lihood or Bayesian method. There are, however, many other situations in which the
true linkage between{Yi(t)} andθ is more complicated, and scientists use physical
rules and/or mathematical equations to model such linkage.To illustrate these situa-
tions, we provide two examples—the light detection and ranging (LIDAR) data and
the foliage-echo data.

1. The LIDAR data. LIDAR is an optical remote-sensing technique that uses laser
light to measure targets and produces high-resolution functional data. For ex-
ample, authors in [32] considered LIDAR data measured on an aerosol cloud.
During the measurement, a point source laser was transmitted into an aerosol
cloud at multiple wavelengths and over multiple time points. The laser light was
then scattered by the aerosol cloud and reflected back to a receiver. The resulting
data can be modeled byY (t,z) = g(t,z)+ ε(t,z), wheret is time,z is the range
value,Y (t,z) is the random surface that can be observed,g(t,z) is the underly-
ing true signal, andε(t,z) is the random measurement error. The linkage between
g(t,z) and the parameters of interest is implicit, described by a partial differential
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equation (PDE):

∂g(t,z)
∂ t

−θD
∂ 2g(t,z)

∂ z2 −θS
∂g(t,z)

∂ z
−θAg(t,z) = 0,

subject to boundary conditions. Here, the parametersθD,θS, andθA denote the
diffusion rate, the drift shift, and the reaction rate respectively, which reflect the
physical properties of the laser light reflection. Consequently, the relationship
between the functional observationY (t,z) and the parameters is implicit, and
one cannot write the likelihood ofY (t,z) in terms of the parameters explicitly.

2. The foliage-echo data. The foliage-echo data represents a more general situation
when functional data is produced by a complicated system which cannot be de-
scribed using a single formula (e.g., a PDE). During the measurement, an active
sonar system transmits acoustic waves into tree foliages, and the waves reflected
back from the foliages (i.e. the echoes) are received. Whilethe mechanism of
sound propagation and reflection is complicated, we are ableto simulate echoes
using a simulator by applying acoustic laws under simplifiedassumptions. De-
tails of the simulation are described in Section 2 and the Appendix. Our goal is
to estimate properties of the foliages, such as the density of the leaves (i.e., how
many leaves per cubic meter), based on the echoes.

The above two examples demonstrate functional data produced by complex sys-
tems. These systems have the following characteristics: (1) Due to the complexity
of the underlying physical rules, the parameter estimationis a difficult inverse prob-
lem which may be ill-posed, meaning that the solution to the parameter estimation
may not be unique. For example, both LIDAR and foliage-echo examples are re-
mote sensing problems in which the data are aggregations of reflected waveforms
from numerous reflectors; therefore, it is possible that different combinations of the
model parameters result in the same/similar data outputs. Furthermore, analytical or
numerical solution to these inverse problems is often hard to find. (2) One can nu-
merically simulate data from a physical/mathematical model (e.g., a PDE or a more
complicated simulator), but the simulation may be computationally intensive. (3)
The data-generation procedure of the complex system involves random variables,
hence, it produces random functional outputs for a given setof parameters. For ex-
ample, in both LIDAR and foliage-echo examples, randomnessmay be caused by
measurement error and/or numerous reflecting facets whose size, location, and ori-
entation follow certain probability distributions. (4) Itis often difficult to explicitly
link the functional outputs with the underlying parametersvia a likelihood or an
objective function. (5) The functional outputs are often measured on a dense, high-
dimensional grid.

For systems that can be described using ordinary differential equations (ODEs)
or PDEs, such as the LIDAR data case, estimation approaches based on regularized
optimization, also calledparameter cascading, have been proposed [18, 14, 32, 35].
These methods, however, are not suitable for systems that cannot be described by
ODEs or PDEs. In this paper, we propose a wavelet-based approximate Bayesian
computation (wABC) approach that is applicable to general complex systems—
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systems that include ODE and PDE as special cases. For this reason, we will use the
more general foliage-echo data as our primary example.

The proposed wABC approach inherits the “likelihood-free”property of the tra-
ditional approximate Bayesian computation (ABC) [15, 26] through bypassing an-
alytical evaluations of the likelihood function. The bypassing is achieved through
approximating the likelihood function evaluation by simulation. The basic idea is
illustrated in Figure 2. Specifically, instead of evaluating the likelihood, the ABC
approach first samples a candidate parameterθ ∗ from the prior distributionπ(θ ),
then simulates data{Xi} from a “simulator” of the system by treatingθ ∗ as the in-
put. If the simulated data is “close to” the observed data, the candidate parameterθ ∗

is accepted, otherwise it is rejected. A more detailed review of ABC can be found
in Section 3.1.

Fig. 2 The basic idea of the ABC method. Here,{Xi} represent the simulated data,{Yi} represent
the observed data, andρ(·, ·) measures how “close” the simulated data are to the observed data.

Despite their flexibility in handling complex systems, as a simulation-based ap-
proach, the ABC method suffers from low efficiency when the dimension of the
observed data increases and when the “simulator” becomes computationally expen-
sive. As the dimension of the data increases, the criterionρ({Xi(t)},{Yi(t)}) ≤ ε
is harder to be satisfied, resulting in lower acceptance rate. When the “simulator”
becomes moderately expensive, even on the scale of a few seconds per simulation,
accepting 1000 samples ofθ would require hours of calculation, and the compu-
tation quickly becomes intractable when the acceptance rate drops. Our proposed
wABC approach extends beyond existing ABC by allowing functional outputs mea-
sured on high-dimensional grid, yet still remains computationally tractable. It relies
on the near-lossless wavelet decomposition and compression to reduce the high-
correlation between measurement points and the high-dimensionality, and adopts a
Markov chain Monte Carlo algorithm with a Metropolis-Hastings sampler to obtain
posterior samples of the parameters. To avoid expensive simulations, a Gaussian
process surrogate for the simulator is introduced, and the uncertainty of the result-
ing sampler is controlled by calculating the expected errorrate of the acceptance
probability.

To our knowledge, the proposed wABC approach is the first thatestimates pa-
rameters in complex systems based on functional outputs measured on a dense,
high-dimensional grid. It is generally applicable to various physical, chemical, and
biological systems that facilitate numerical simulations. Compared with existing
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functional data analytical tools, our approach has the following advantages: (1) It
is likelihood-free. It takes full advantages of the physical/mathematical rules that
connect data with the parameter. (2) It can characterize various linear or nonlinear
data-parameter relationships. (3) It produces the joint posterior distribution of the
parameters with various multi-modality and shape structures. (4) It is scalable to
functional outputs measured on high-dimensional grids as well as expensive simu-
lations. Our results for the simulated foliage-echo data demonstrate the effectiveness
of the proposed method in estimating parameters.

2 A Motivating Example: The Foliage-echo Simulation System

While the method we propose is generally applicable to various complex systems, it
is initially motivated by the foliage-echo study. The goal of the study is to estimate
the statistical properties of tree foliages, i.e., the density of the leaves, the average
size of the leaves, and the average orientation of the leaves, based on the echo signals
captured by a sonar device.

Figure 3 shows the working mechanism of an active sonar, which consists of
an emitter that ensonifies the environment and a receiver that records the returning
echoes. The transmitter emits acoustic waves and the receiver collects echoes re-

Fig. 3 The principle of an active sonar. This figure was created based on an online figure available
at the Wikipedia website on Sonar [31] (https://en.wikipedia.org/wiki/Sonar).

flected from objects in the environment. The echo signals carry information about
the targets, hence have been used for various identificationand navigation tasks [27].
In natural environments, an echo signal is the superposition of reflected waveforms
from numerous scatterers, e.g., foliage leaves, rocks in uneven natural terrains, thus
is highly stochastic.

To study the foliage echoes, we establish a computational model to simulate a
natural sonar scene in a three-dimensional (3-d) space. Thescene is demonstrated
in Figure 4 (a), which consists of an active sonar sensor and acluster of tree leaves.
The sensor is located at the origin. It emits ultrasonic waves towards the positive x-
axis direction. The tree foliages are uniformly located in a[1,10]× [−2,2]× [−2,2]
region in 3-d. The total number of leaves is determined by theleaf density—the
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Fig. 4 The Foliage-echo Simulation. (a) The sonar scene in 3-d. Thecolor indicates the sound
intensity leaves receive/reflect (scaled to[0,1]). (b) A simulated echo signal with leaf density of 30
(in number of leaves per cubic meter), leaf radius of 0.0171 (in meter), and leaf orientation of 45
(in degree). (c) A demonstration of the upper and lower envelopes of the waveform. (d) The echo
envelope extracted from the echo signal in (b).

number of leaves per cubic meter, denoted byθ1. The leaf shapes are approximated
by planar circular disks with radius (denoted bya) randomly sampled from a nor-
mal distributionN(θ2,0.1θ2), whereθ2 denotes the mean radius. The orientation of
each leaf relative to the sonar is determined by two angles: (1) the angle between
the leaf normal vector and pulse direction (the positive x-axis direction), which fol-
lows a truncated normal distributionN(β |θ3,5)1{0<x<90} with θ3 the mean angle
and 5 the variance; and (2) the angle that describes the rotation of the leaf normal
vector around the pulse direction clockwisely, which follows a uniform distribution
in the range of[0,2π). Based on these two angles, we further calculate the inci-
dent angle—the angle between the leaf’s normal direction and the sonar-leaf center
line. We denote the incident angle byβ . With these setups and the specification of
the acoustic properties of the sonar, echoes are simulated following acoustic laws
of sound emission, propagation, and reflection [3]. More technical details of the
simulator are described in the Appendix.

The above simulation model constitutes a physical system with three inputs: the
leaf density (θ1), the mean leaf radius (θ2), and the mean leaf orientation (θ3). The
output is an echo signal as demonstrated in Figure 4 (b). The output echo signal is a
temporal waveform measured from 0 to 60 milliseconds with a sampling rate of 400
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kHz. The total number of measurement points is 24,000 for each echo. The parame-
ters(θ1,θ2,θ3) summarize the statistical properties of the foliage targets. Therefore,
estimating these parameters based on the echo signals provides us knowledge of the
targets. While the current study only involves echoes simulated from a physical
model, our ultimate hope is to use the proposed estimation approach to infer target
properties based on echoes collected in a real scene.

Directly modeling the echo signals is difficult because the echoes contain infor-
mation about both emitted signals and the target properties. Since sound reflection
from stationary targets does not change the carrier frequency of the emitted signal,
information about targets is contained in the amplitude modulation, which is cap-
tured by theenvelopes of the echo signals. We therefore perform a preprocessing
step to extract the echo envelopes, and use this data for our analysis. The envelope
of a signal is the boundary curve within which all amplitude values of the signal are
contained. A conceptual demonstration is shown in Figure 4 (c). The envelope of an
echo retains the target-specific information by capturing the low frequency ampli-
tude variations, which makes it an ideal representation of echo signals. In the sonar
echo data, since the upper and the lower envelopes are alwayssymmetric, we only
consider the upper envelopes in our data analysis. The envelope signal extracted
from the echo in Figure 4 (b) is shown in Figure 4 (d).

3 Wavelet-based Approximate Bayesian Computation

The foliage-echo data example demonstrated in Section 2 represents a family of
parameter estimation problems involving functional data.In these problems, func-
tional data is related to the parameters of interest througha complex system guided
by physical or mathematical rules. As a result, one cannot explicitly write the like-
lihood of the functional outputs as a function of the parameters. To facilitate pa-
rameter estimation under these scenarios, we propose a wavelet-based Approximate
Bayesian Computation (wABC) approach. The logic behind themain concepts in-
troduced in Sections 3.1–3.4 and their connections with wABC are illustrated in
Figure 5. Section 3.1 reviews the general ABC approach, which is the foundation
for the proposed wABC approach. In order to facilitate functional outputs measured
on a dense, high-dimensional grid, we represent functionaldata through wavelet ba-
sis expansion and perform a wavelet compression to reduce dimension; details are
in Section 3.2. For simulators that are computationally expensive, we further intro-
duce the Gaussian process surrogate for the simulator to enable fast simulation; this
is discussed in Section 3.3. Sections 3.1–3.3 constitute the general framework of
wABC. Finally, in Section 3.4, we introduce a method to control the uncertainty of
the decision-making in wABC.
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Fig. 5 The logic behind the concepts introduced in Sections 3.1–3.4 and their connections with
wABC.

3.1 Review of Approximate Bayesian Computation

Let Y denote a random element whose realizations are the observeddata and let
θ denote a parameter that determines the distribution ofY . In a typical Bayesian
setup, one computes the posterior distributionπ(θ |Y )∝ π(Y |θ )π(θ ), whereπ(Y |θ )
is the likelihood that relatesY to the parameterθ andπ(θ ) is the prior distribution
for θ . Approximate Bayesian Computation (ABC), initially proposed by [17], aims
to approximate the posterior distributionπ(θ |Y ) without explicitly specifying the
likelihood π(Y |θ ). In particular, we assume thatπ(Y |θ ) is unknown, but there is a
simulation model, often denoted byπ(X |θ ), that produces simulated dataX given
θ ∗. We sometimes callX the pseudo-data. Here,θ ∗ is an arbitrary sample from the
prior distributionπ(θ ). If X is “close to”Y , we retainθ ∗ as a sample ofπ(θ |Y ),
otherwise, we rejectθ ∗ and repeat the procedure with a newθ ∗. This procedure, as
illustrated in Figure 2, will be repeated until the desired amount of “good samples”
is collected. In ABC, we often use a distance measureρ(·, ·) to determine how close
X is toY . For example, in the univariate case, by lettingρ(X ,Y ) = |X −Y |, we will
retainθ ∗ when|X −Y | ≤ ε for a smallε.

The above procedure indeed produces samples for the distributionπ(θ |{ρ(X ,Y)≤
ε}), a distribution that is identical toπ(θ |Y ) whenε = 0 (i.e.,X = Y ). However,
since{X=Y} happens with probability 0 for continuous random variables, in prac-
tice, we can only requireρ(X ,Y ) ≤ ε for a small discrepancyε, which results in
π(θ |{ρ(X ,Y)≤ ε}). The distributionπ(θ |{ρ(X ,Y)≤ ε}) serves as an approxima-
tion of π(θ |Y ) whenε is small, i.e.,

π(θ |Y)≈ π(θ |ρ(X ,Y)≤ ε), for a smallε.

When multiple samples are observed, we index the data byYi, i = 1, . . . ,n
and denoteY = {Y1, . . . ,Yn}. In this case, ABC can be performed by sampling
X = {X1, . . . ,Xm} based on eachθ ∗, and defineρ(·, ·) based on a summary statistic
S(·) of the samples. IfS(Y) is a sufficient statistic forθ , thenS(Y) contains all infor-
mation aboutθ , thereforeπ(θ |Y) = π(θ |S(Y)), which can be shown by applying
the Fisher-Neyman factorization theorem [13]. The right-hand side of the equation
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π(θ |S(Y)) can be further approximated byπ(θ |ρ(S(X),S(Y))≤ ε) using the ABC.
For example, if{Y1, . . . ,Yn} is a random sample from a Bernoulli distribution with
meanθ , then one can defineρ(X,Y)= |sY − sX |, whereS(Y) = sY is the sample mean,
a sufficient statistic forθ .

Markov Chain Monte Carlo for ABC. The traditional ABC procedure relies on
acceptingθ ∗ whenρ(S(X),S(Y))≤ ε. This procedure can be embarrassingly ineffi-
cient because of two reasons: (i) A good sufficient statisticcan be hard to find. Some-
times one has to use the original data set as the sufficient statistic. (ii) The acceptance
rate can be extremely low especially when the statisticS(·) or the parameterθ is of
high dimension. Various alternative algorithms have been proposed to improve the
computational efficiency of ABC. Here, we review an Markov chain Monte Carlo
(MCMC) algorithm using the Metropolis-Hastings (MH) sampler. More discussions
of the MCMC algorithm for ABC can be found in [30, 6, 1, 22], among others. First,
we transfer the acceptance criterionρ(S(X),S(Y))≤ ε to a probability density func-
tion πε(S(Y) | S(X)) controlled by the discrepancy parameterε. For example, with
an independent Gaussian assumption, we may write

πε(S(Y) | S(X)) = (2πε)−J/2exp{− 1
2ε2(S(X)− S(Y))T (S(X)− S(Y))}, (1)

whereJ is the dimension of the sufficient statisticS(·). With this representation, we
can approximate the likelihoodπ(S(Y) | θ ) by πε(S(Y) | θ ), and the latter can be
approximated using the Monte Carlo integration

πε (S(Y) | θ ) =
∫

πε(S(Y) | S(X))π(S(X) | θ )dS(X) ≈ 1
H

H

∑
g=1

πε (S(Y) | S(X(g))). (2)

Here,{X(g),g = 1, . . . ,H} denoteH samples of the pseudo-data generated from the
simulator,π(X | θ ). Note that we do not need to evaluateπ(S(X) | θ ) in equation
(2). We just need to sample from it. Based on the approximatedlikelihood, we can
design a MCMC algorithm by assuming an proposal distributionq(θ ∗|θ ). We accept
the proposedθ ∗ with probability

α(θ ∗|θ ) = min

{
1,

π(θ ∗)πε(S(Y) | θ ∗)q(θ |θ ∗)
π(θ )πε(S(Y) | θ )q(θ ∗|θ )

}
.

The above MCMC algorithm provides improved mixing for the posterior samples
than the traditional rejection-based ABC algorithm. However, it requiresH repeated
calls to the simulator in order to compute the approximationin equation (2), and this
has to be performed during each MCMC iteration. Here,H needs to be large enough
to guarantee a good approximation, e.g.,H = 1000 is reasonable ifπ(S(X) | θ ) is
a Gamma distribution. Repeated sampling can be a computational burden when the
simulator runs slow. In Section 3.3, we adopt a Gaussian process surrogate (GPS)
for the simulator following the idea of [1], which substantially reduces the number
of simulation calls.
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3.2 Wavelet Representation and Compression of Functional Data

While the idea of ABC is straightforward to follow, it can be inefficient due to a
number of assumptions and approximations that may not be easily satisfied. One
assumption is the existence of a sufficient statistic for theparameters of interest.
Given a random sampleY = {Y1, . . . ,Yn}, the determination of a sufficient statistic
S(Y) for θ is often difficult without knowing the distribution ofYi. Although one
can always choose the data itself as the sufficient statistic, doing so only makes the
specification of the distance measureρ(·, ·) extremely difficult (because the dimen-
sion of Y is high). This issue is particularly severe for high dimensional vectors
and functional data. In our foliage-echo example, an echo envelope is of dimension
24,000, therefore, the dataY can be written as an-by-24,000 matrix. Given that the
relationship between the data and the parameters is implicit, determining a sufficient
statistics for(θ1,θ2,θ3) givenY is practically intractable.

To facilitate the efficient performance of ABC for functional data measured on
a dense, high-dimensional grid, we adopt a strategy that achieves de-correlation
and compression so that functional observations can be parsimoniously repre-
sented in a much lower dimensional setting. In particular, we represent the func-
tional data by a multi-scale wavelet basis. Given a set of multi-scale wavelet ba-
sis functions{ψ jk; j = 1, . . . ,J, k = 1, . . . ,K j} and a scale function (the father
wavelet) {ψ0k;k = 1, . . . ,K0}, we can expand a functional observationY (t) by

Y (t) = ∑J
j=0∑

K j
k=1 d jkψ jk(t). Here,d jk is the wavelet coefficient at scalej and lo-

cationk. For functional data measured on an equally spaced grid, this representa-
tion is lossless, i.e., providing an exact representation of the original data. There-
fore, {d jk} contain the same amount of information asY (t) thus can be treated as
a sufficient statistic forθ . We can denote the sufficient statistics ofY asS(Y) = D,
whereD = (di jk) is a n-by-K matrix andK = ∑J

j=0K j . In general, the wavelet
transformation is not the only option. It is possible to construct lossless trans-
forms with other basis functions (e.g. Spline or Fourier bases), or construct an ap-
proximately lossless transformation with a basis{Bk(t),k = 1, . . . ,K} that satisfies
|Y (t)−∑K

k=1 dkBk(t)|< δ for all t and a smallδ .
The wavelet representation has two advantages: the coefficients{d jk} are sparse,

meaning that most coefficients are zero or close-to-zero, and they are approximately
uncorrelated. These properties bring two types of convenience to the specification
of the distance measure in ABC. First, since components in{d jk} are approximately
uncorrelated, the conditional distributionπε(S(Y) | S(X)) can be specified follow-
ing equation (1), i.e., assuming that components ofS(Y) (or S(X)) are mutually
independent of each other. Second, the sparsity of the wavelet coefficients makes
the wavelet compression feasible.

Wavelet Compression. For many high-dimensional problems, representing the
data in a much lower dimensional space brings tremendous convenience to data stor-
age and processing. This is also true in the ABC context. LetD= (di jk) denote then
by K matrix of wavelet coefficients, and theith row corresponds to the wavelet coef-
ficients of theith functional observation. SinceD is sparse, many components ofD
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are zero or close-to-zero, therefore does not contain essential information about the
parameter. Wavelet compression removes zero or close-to-zero components while
retaining the large components. The compressed matrix, denoted byD̃, is nearly
lossless, thus can be used as an approximately sufficient statistic for θ . To compress
D, we retainK1 columns ofD so that the proportion of energy retained is greater
than (or equal to) a thresholdδ1 (e.g.,δ1 = 0.999) for each function. Here, the pro-
portion of energy retained for a functionYi(t) is defined by∑( j,k)∈C1

d2
i jk/∑( j,k) d2

i jk,
whereC1 is the set of scale and location indices that correspond to columns retained
in D̃.

The wavelet representation and compression introduced above provide an effec-
tive way to transform the functional observationY to wavelet coefficient matrixD
in the wavelet domain, and to reduce the dimension ofD from n-by-K to n-by-K1.
The compression also has the effect of removing high frequency noise in functional
data. The reduced datãD will be treated as a sufficient statistics ofY to be used in
the MCMC sampling scheme for wABC.

3.3 A Gaussian Process Surrogate for the Simulator

As discussed in Section 3.1, although the MCMC method can provide better mixing
than the traditional rejection-based ABC method, it requires sampling from the sim-
ulatorH times during each MCMC iteration. Even if each simulation only requires a
moderate amount of time, running a large amount of MCMC iterations can be com-
putationally intractable. For example, our foliage-echo simulator takes 2.3 seconds
to simulate one echo envelope. If the MCMC algorithm has an acceptance rate of
30%,H = 100, and the number of independent samples inX is m = 3, the expected
time needed to obtain 1000 posterior samples ofθ is around 639 hours (26.6 days).
It is possible to use parallel computing at the stage of computing πε(S(Y) | θ ), i.e.,
during each MCMC, theH samples ofX (which containHm echoes) can be per-
formed in parallel using a multi-core computing server. However, it may still take
days to obtain 1000 posterior samples ofθ because the number of computing cores
one has access to is often limited. The modern graphics processing units (GPU)
based computing system provides far more computing cores [23], but each core can
only deal with relatively simple calculation, therefore may not be suitable for the
large-scale matrix calculations required by our simulator. When the speed of the
simulator cannot be improved any further, a good solution isto adopt a strategy that
requires less calls of the simulator. We now introduce a GPS for the simulator fol-
lowing the idea of [1]. GPS can substantially reduce the number of simulation calls
in the MCMC.

We explain the GPS in the context of the foliage-echo example. Suppose that
J columns ofD are retained after wavelet compression. LetD̃y = (d1

y , . . . ,d
J
y) de-

note then-by-J matrix of wavelet coefficients after compression, where each d j
y

is ann-by-1 vector. In the foliage-echo example, The randomness in the leaf lo-
cation, orientation, and radius causes random fluctuationsin the n samples. These
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fluctuations reflect the leaf-specific information, i.e., exact locations, orientations,
and radii of leaves in a scene, which is not relevant to the population parameters
(θ1,θ2,θ3). Therefore, we remove the random fluctuation by averaging each d j

y

across itsn entries, resulting in a scalarsd j
y . Denote the averaged wavelet coefficients

by sDy = ( sd1
y , . . . ,

sdJ
y )

T . We will useS(Y) = sDy in the analysis of foliage-sonar data.
Since the wavelet coefficients insDy are approximately independent of each other,
we will calculate the likelihoodπε( sd j

y | θ ) for eachj independently. We assume that

sd j
y =

sd j
x + e j, e j ∼ N(0,ε2). (3)

Here, sd j
x is the jth averaged wavelet coefficients based on the simulated samples

X = {X1, . . . ,Xm}. Model (3) is equivalent to assuming thatπε( sd j
y | sd j

x) corresponds
to aN( sd j

x ,ε2) distribution. We further approximate the simulator distributionπ( sd j
x |

θ ) by assuming thatsd j
x follows a Gaussian process (GP) regression model:

sd j
x = f j(θ )+ r j, f j(θ )∼ GP(0,k j(θ ,θ ∗)), r j ∼ N(0,σ2

j ), (4)

where f j(θ ) is an unknown GP with mean zero and a pre-specified covarianceker-
nel k j(θ ,θ ∗). For example, a commonly used covariance kernel is the squared ex-
ponential kernelk j(θ ,θ ∗) = φ2

j exp{−||θ − θ ∗||2/(2τ2
j )}. Since both (3) and (4)

induce Gaussian distributions, we can analytically calculateπε( sd j
y | θ ) by integrat-

ing out sd j
x . This analytical integration avoids the need to perform approximation

using Monte Carlo integration as described in equation (2).We call the GP regres-
sion model (4) a GPS. The main idea is to train a GP model on a grid of θ and use
it to replace the simulation distributionπε( sd j

y | θ ). This strategy avoids the need of
frequently calling the simulator during the MCMC iteration.

Specifically, we calculateπε( sd j
y | θ ) following a three-step procedure.

1. Produce a grid of valuesΘ = (θ1, . . . ,θA)
T on the domain ofθ , generateX =

{X1, . . . ,Xm} at each grid point, perform wavelet decomposition and compression
of X, and average the wavelets coefficients across them samples. This results in
a list of “input-output” pairs{(θi, sd j

x, i), i = 1, . . . ,A}, which will be treated as the
training data for estimating the functionf j(θ ).

2. Given a pair of values(θ ∗,θ ), we will calculate the GP predictive distribution
on(θ ∗,θ ) using the conditional distribution, which givesN(µ j

(θ∗,θ)|Θ ,Σ j
(θ∗,θ)|Θ ),

where

µ j
(θ∗,θ)|Θ =

(
kθ∗,Θ
kθ ,Θ

)(
KΘ ,Θ +σ2

j I
)−1

sd j
x , (5)

Σ j
(θ∗,θ)|Θ =

(
kθ∗,θ∗ kθ∗,θ
kθ ,θ∗ kθ ,θ

)
−
(

kθ∗,Θ
kθ ,Θ

)(
KΘ ,Θ +σ2

j I
)−1

(
kθ∗,Θ
kθ ,Θ

)T

. (6)

Here,sd j
x = ( sd j

x,1, . . . ,
sd j
x,A)

T is anA-by-1 vector of training points,kθ∗,Θ is a 1-
by-A vector consisting of kernel evaluations atθ ∗ and components inΘ , KΘ ,Θ is
anA-by-A matrix consisting of kernel evaluations at two components in Θ , and
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kθ∗,θ = k(θ ∗,θ ). We treat the above GP conditional distribution as asurrogate of
the simulator. In Figure 6, we compared the prediction performance of the GPS
at a test value ofθ1 with the sample estimate obtained from data directly sampled
from the simulator. Here, we have fixedθ2 andθ3, treatingθ1 as the parameter
to be estimated. Figure 6 demonstrates that the GPS gives as accurate prediction
as the sample estimates (which are based on 100 samples) using only 10 training
locations on the support ofθ1.
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Fig. 6 A one-dimensional demonstration of the GP prediction usingthe sonar-foliage simulator.
Here, we have fixedθ2 = 0.017 andθ3 = 45, and treatedθ1 as the unknown parameter. Left panel:
the gray lines are the first wavelet coefficient ofm = 3 simulated echo envelopes atA = 10 grid
points on the domain[5,50]; the black lines are the average of the three gray lines; the magenta
dot and line are the predictive mean and the confidence interval (mean±2std) calculated using the
GPS. Right panel: the gray lines and the black lines are the same as the left panel. The magenta dot
is the sample estimate of the mean, and the magenta bar is the confidence interval based on 100
echoes sampled directly from the simulator.

3. Based on the GPS, the likelihoodsπε(d̄
j
y | θ ∗) andπε(d̄

j
y | θ ) can be approximated

by N(d̄ j
y |µ j,†

θ∗ ,σ2
j +ε2) andN(d̄ j

y |µ j,†
θ ,σ2

j +ε2) respectively, where(µ j,†
θ∗ ,µ j,†

θ ) is

a sample fromN(µ j
(θ∗,θ)|Θ ,Σ j

(θ∗,θ)|Θ ). The acceptance probability of the MCMC
can be calculated by

α(θ ∗|θ ) = min

{
1,

π(θ ∗)∏J
j=1N(d̄ j

y |µ j,†
θ∗ ,σ2

j + ε2)q(θ |θ ∗)

π(θ )∏J
j=1 N(d̄ j

y |µ j,†
θ ,σ2

j + ε2) q(θ ∗|θ )

}
. (7)

Note that if the functionf j(·) is known, we can replaceµ j,†
θ∗ andµ j,†

θ by the true val-
ues off j(θ ∗) and f j(θ ) respectively, in which caseα(θ ∗|θ ) is a deterministic value.

However, since we have used GPS, the randomness ofµ j,†
θ∗ andµ j,†

θ introduces un-
certainty toα(θ ∗|θ ). This uncertainty may cause an error for decision-making in
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the MCMC algorithm. Therefore, we need to control the uncertainty so that the
probability of making a wrong decision based onα(θ ∗|θ ) is reasonably low. We
discuss this issue in Section 3.4.

3.4 Control the Uncertainty of Decision-making in wABC using
GPS

The control of uncertainty in the GPS-based MCMC algorithm serves two purposes:
to control the error rate of making decisions (e.g., the decision of accepting/rejecting
the proposedθ ∗) based on GPS in the MCMC algorithm, and to provide a strategy
of refining the GPS of the simulator. The main idea is to keep adding training data
to the GPS at each iteration until the expected probability of making the wrong
decision is less than a pre-specified thresholdξ (e.g.,ξ = 0.3).

In particular, sinceµ j,†
θ∗ andµ j,†

θ are random samples from the GPS,α in equation
(7) is a random variable. In stead of making decisions based on oneα value, we
produceL samples{α(l), l = 1, . . . ,L}, and calculate a summary statisticζ from it.
We will acceptθ ∗ if u < ζ and rejectθ ∗ if u ≥ ζ . Here,u ∼ Unif(0,1).

Now we can calculate the probability of making a mistake following the above
decision rule. Ifu< ζ , we will acceptθ ∗, and this will be a wrong decision if indeed
{u > α}, in which case we should rejectθ ∗. The probability that this situation
appears is 1{u<ζ}Pr({u>α}). Similarly if u≥ ζ , the probability of making a wrong
decision is 1{u≥ζ}Pr({u≤α}). Therefore, given a value ofu, the overall probability
of making an error is

Wu(α) = 1{u<ζ}Pr({u > α})+1{u≥ζ}Pr({u ≤ α}), u ∼ Unif(0,1).

We can further integrate outu from the above conditional error function to obtain
the marginal probability of making an error, i.e.,

W (α) =

∫ 1

0
Wu(α)du,

The above error probabilityW (α) is minimized whenζ = median(α); a detailed
argument can be found in the Section 3.1 of [1] and the reference therein.

The above result enables us to control the probability of making a wrong decision
in the Step 3 in Section 3.3 by calculatingα L times, each with different samples
of µ j,†

θ∗ andµ j,†
θ . This calculation is very efficient since obtainingL samples from

a multivariate normal distribution is fast. Based on the L samples ofα, we setζ to
be the sample median ofα and calculateW (α) numerically. IfW (α) > ξ , we will
add more training points (i.e., creating a denser grid on thesupport ofθ ) and repeat
Step 2-3 in Section 3.3 again, untilW (α) ≤ ξ . We finally accept the proposedθ ∗

if u < ζ for a randomu sampled from Unif(0,1). This completes one iteration of
the MCMC. The above adaptive strategy allows us to adjust forthe training points
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for the GPS so that the probability of making a wrong decisionis controlled during
each MCMC iteration.

4 The Algorithm and Parameter Settings

We describe the algorithm for the proposed wABC approach in the context of fo-
liage echo data. Detailed steps are described in Algorithm 1. Algorithm 1 is an
approximate MCMC algorithm because we have used GPS to approximate the sim-
ulator. These samples are used to approximate samples from the simulator. With
GPS, we only need to call the simulator∆ times at each iteration under the con-
dition W (α) > ξ . As more training points are added, the GPS will become more
reliable. Eventually, there will be no need to call the simulator at all during the
MCMC iterations.

Algorithm 1: An MCMC Algorithm for wavelet-based ABC using GPS.

Input: Y , A, ∆ , θ , ε , ξ , q(· | ·), {σ 2
j }, π(θ ), m, N, k(·, ·), the simulator.

Step 1:Perform wavelet decomposition and compression onY to getsDy.
Step 2:Create a gridΘ of sizeA. Generate initial training pointsX from the simulator at

each grid point inΘ . Perform wavelet decomposition and compression on eachX to
get{(θi, sd j

x, i), i = 1, . . .,A} for j = 1, . . . ,J.
Step 3:Run the following MCMC iterations.
for i = 1 to N do

Proposeθ ∗ from q(θ ∗ | θ );
while W (α)> ξ do

Step 3.1: Calculate the mean and covariance for(θ ∗,θ ) following (5)-(6) for all j,
j = 1, . . .,J;
Step 3.2: GenerateL samples ofµ j,†

θ∗ andµ j,†
θ and calculate{α (l), l = 1, . . . ,L}

using equation (7);
Step 3.3: Setζ = median({α (l), l = 1, . . .,L}) and calculate the probability of
making a wrong decisionW (α);
if W (α)> ξ then

Add ∆ grid points toΘ , generate new training data at each newly added grid
point. Add these points to the existing training points;

end
end
Sampleu ∼ Unif(0,1);
if u < ζ then

Setθ = θ ∗;
end
Saveθ ;

end
Output: N posterior samples ofθ .

For the numerical stability of the algorithm and the convenience of setting param-
eters, we recommend to rescale the compressed dataD̃y and the simulated features
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D̃x using a common set of constants so that all values are in a similar scale (e.g.,
[−1,1]). The scaling constants can be estimated from the observed data (e.g., using
the minimum and maximum ofd j

y for eachj). Similarly, in the GPS calculation, we
recommend to scale allθ parameters to a common range (e.g.,[0,1]).

Parameter settings.There are two types of model parameters we need to spec-
ify in the wABC algorithm—those in the GPS and those in the MCMC algorithm.
Generally speaking, we suggest to determine parameters in GPS by checking the GP
prediction at someθ values, so that the resulting GP prediction is comparable with
that obtained by directly sampling from the simulator. Figure 6 provides an exam-
ple of such comparison. Furthermore, we suggest to tune parameters in the MCMC
algorithm by controlling the expected performance of the algorithm, such as the
acceptance rate of the Metropolis-hastings sampler. In what follows, we introduce
some specific guidelines.

The parameterε in equation (7) is a small value that controls the expected dis-
crepancy between simulated and observed data. We suggest toset a small value
(e.g., 1e-4) forε. In the GPS MCMC algorithm, it is possible to setε = 0 as done
by [1]. The parameters{σ2

j } in (4) control the noise level in the GP regression. We
found that these parameters may substantially influence thepredictive covariance of
the GPS, i.e., the covariance in (6). A reasonable way to determine{σ2

j } is to take

the empirical variance ofd j
x (calculated across them replicates of̃Dx) and average

them across all grid points inΘ . The parameters in the GP kernelk(·, ·) also play
important roles in determining the predictive mean and covariance of the GPS. We
have used the squared exponential kernelk j(θ ,θ ∗) = φ2

j exp{−||θ − θ ∗||2/(2τ2
j )}

for each j. In the foliage-echo data analysis, we have scaled theθ parameters to
[0,1] and scaled allsd j

x , j = 1, . . . ,J} to [−1,1]. Under these setups, we found that
settingφ j ≡ 0.1 andτ j ≡ 0.4 is a reasonable choice. In practice, we recommend the
users to start with the one-parameter settings (i.e., fixingall other parameters) and
plot the predictive error bar like shown in Figure 6. This helps visualize the effect
of the parameter setups. The parametersξ , m, N, A, and∆ can be tuned based on
the computation speed and the acceptance rate of the MCMC algorithm.

In general, the accuracy of the posterior estimation can be improved by increasing
the sample size in dataY, reducing the thresholdξ for the probability of making
an error in the MH sampler, increasing the size of the training grid for GPS, and
increasing the number of training samplesm at each GP training grid.

5 The Analysis of Simulated Foliage-echo Data

While our ultimate goal is to apply wABC on real foliage-echodata collected under
experimental or natural environments, at this stage, the real data has not yet been
made available. Therefore, in this analysis, we will only provide the parameter es-
timation result based on echoes simulated from the foliage-echo simulation model
described in the Appendix. Because the true parameters are known in this simula-
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tion setup, our analysis provides the proof-of-concept forthe feasibility of wABC
for complex systems.

We applied the proposed wABC approach to a set of foliage-echo data simu-
lated from the sonar-foliage simulator. The data consists of n = 100 echo enve-
lope signals sampled independently from the simulator under the true parameter
(θ1,θ2,θ3) = (30,0.017,45). We aim to solve the inverse-problem by estimating the
three underlying parameters based on the 100 echo envelopeswhile assuming that
the domains of the parameters areθ1 ∈ [5,50], θ2 ∈ [.005, .05], andθ3 ∈ [1e-4,90].

We applied the wavelet transformation to each echo envelopeusing Daubechies
wavelets with the maximal number of vanishing moments being12 (i.e., db12). The
number of resolution levels is set to beJ = 20, and the boundary extension mode is
set to be periodic. The wavelet decomposition transforms each echo envelope from
the time domain (with 24,000 measurement points) to the wavelet domain (with
24,008 wavelet coefficients). We further applied wavelet compression by retaining
δ1 = 0.999 of the total energy. This reduces the dimension of the wavelet coefficients
from 24,008 to 992. We then applied MCMC with GPS using Algorithm 1. We
adopted a random walk proposal by setting the proposal distributionq(θ ∗ | θ ) to be
a truncated log-normal with a scale parameter 0.05. To train the GPS, we segmented
the domain of(θ1,θ2,θ3) using a 10×10×10 equally-spaced grid. This gave a total
of 1000 training points for the GPS. The number of repeated samples inX on each
grid point was set to bem = 3. The kernel parameters for the Gaussian process
kernel function were set to beφ j ≡ 0.1, τ j ≡ 0.4. Theε parameter in the MCMC-
ABC was set to be 1e-4 and theξ parameter in the GPS procedure was set to be
0.3. These setups resulted in an acceptance rate of 35% in the MCMC MH sampler.
We monitored the behavior of the posterior samples by checking the trace plots and
the autocorrelation plots. We tested the convergence of thechains by calculating the
Geweke’s Z-statistics [8]. We ran 30,000 MCMC iterations and took the first 10,000
iterations as the burn-in period. Summary statistics of theparameter estimation,
including the posterior means and the 95% credible intervals (CIs), are listed in
Table 1. Table 1 shows that all three CIs cover the true valuesof the parameters.

Table 1 The posterior estimation for the three parameters in the foliage-echo data.

θ1 θ2 θ3

Meaning density in 3-d mean radius mean orientation
Unit counts per m3 meter degree
Domain [5, 50] [.005, .05] [1e-4, 90]
True value 30 .017 45
Post. mean 28.45 .018 42.57
Post. CIs [17.1, 41.9] [.017, .026] [10.1, 72.7]

We further summarized the posterior distribution of parameters using 1-d and
2-d marginal kernel density estimations. In Figure 7, we plot the heatmaps of the
2-d kernel density estimations for each pair of the parameters. The gray dots on the



18 Hongxiao Zhu, Ruijin Lu et al.

heatmaps are the scatter plots of the posterior samples (a total of 15,000 samples
after the burnin period). The white cross sign on the heatmaps mark the true values
of the parameters. The histograms on the top and right-hand side of each heatmap
show the marginal distributions of the parameters (superimposed by the 1-d density
estimations). The red vertical bar in each histogram indicates the location of the
posterior mean, and the red dashed bars indicate the 95% credible interval.

From Figure 7, we observe that the posterior distributions of the parameters
demonstrate skewed, multi-modality shapes. In particular, the marginal distribution
of the leaf size is skewed to the right, and the leaf orientation demonstrates two
modes, one near 10 degree and the other near 40 degree. Furthermore, the 95%
CIs for the leaf density and the orientation are fairly wide.Wide CIs indicate high
uncertainty in the point estimates. These results are not a surprise, because they re-
flect several characteristics of the foliage-echo simulation. First, the echo signals
are highly stochastic—using 100 echoes samples to recover the statistical proper-
ties of the foliages is a challenging task. Second, the multi-modal behavior of the
posterior distribution reflects the non-identifiability nature of the inverse-problem,
i.e., different combinations of the leaf density, size, andorientation could result in
similar reflection behavior of the sound wave. Therefore, the solution to the inverse-
problem is not unique. Despite these challenges, our proposed wABC still provide
a comprehensive view for the distributions of the underlying parameters under a
moderate number of samples—a result that is intractable if using any other existing
statistical approaches. These results demonstrate the promise of solving ill-posed
inverse-problems even when the data is highly stochastic and of high-dimension.

6 Discussion

We have proposed a general simulation-based approach called wABC to estimate
the parameters of a complex system with functional data outputs. The proposed
method relies on simulating from the complex system to estimate the parameters
of interest, which avoids the difficulty of specifying the intractable likelihood. We
accommodate functional data measured on a dense, high-dimensional grid by com-
bining wavelet decomposition with compression, and achieve scalable computation
using a Gaussian process surrogate to the simulator. Our inference is based on pos-
terior samples of the underlying parameters which can be used to recover the joint
distributions of all parameters.

The proposed wABC approach is generally applicable to a large family of
inverse-problems associated with complex systems, such assolving differential
equations based on noisy data and estimating parameters of abiological system.
However, it requires a “simulator” to generate pseudo-data. The simulator needs to
resemble the real system with sufficient accuracy. Otherwise, even if the wABC is
tuned to perform well with simulated data, it may fail on real-word data.

While the GPS has the benefit of avoiding repeatedly calling the simulator, the
computation of GP may become inefficient when the number of grid points goes be-



E
st

im
at

in
g

P
ar

am
et

er
s

in
C

om
pl

ex
S

ys
te

m
s

19

Fig. 7 Results for foliage-echo data analysis. The heatmaps of the2-d kernel density estimations for each pair of parameters.Left: θ1 versusθ2; middle: θ2
versusθ3; right: θ3 versusθ1. The gray dots on the heatmaps are the scatter plots of the posterior samples. The white cross symbol on the heatmaps marks
the true parameter values. The histograms on the top and the right-hand side of each heatmap are the marginal distributions (histograms superimposed by the
1-d kernel density estimations) for each parameter. The redvertical bar in each histogram indicates the location of theposterior mean, and the red dashed bars
indicate the 95% credible interval.
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yond 1000. The main difficulty comes from the evaluation of the inverse covariance
matrix in the predictive calculation, i.e., equations (5)-(6). Our future work involves
replacing the GPS by a local-GPS, i.e., using only a portion of the training points
to predict the mean and standard deviation at(θ ∗,θ ). A promising strategy is to use
the K-nearest neighbor approach. Similar ideas have been adopted by [9] and [10]
in GP regression.

While we have focused on systems with highly-stochastic functional outputs, the
proposed framework is also suitable for deterministic systems in which the simulator
yields a deterministic functional output subject to randommeasurement error. An
example is the LIDAR data introduced in Section 1. In these situations, we just
need to setn = 1 andm = 1 in wABC. These problems are often easier to solve than
the stochastic systems considered here.

Although ABC brings substantial convenience by enabling likelihood-free infer-
ence, it is well-recognized that ABC suffers from “curse of dimensionality” when
the number of parameters increases. That is, it becomes moredifficult to accept a
proposed parameterθ ∗ as the dimension of the parameter space increases [26]. We
adopted an MCMC algorithm in this paper, which has been proposed to attenuate the
low acceptance rate issue. However, it remains generally true that a larger number
of parameters is more expensive to be estimated using ABC-based approaches.

Though a real data analysis is not included in this paper, oursimulation study
provides a solid validation of the statistical component ofthe method. Given that
the proposed method performs well under simulated setting,the only situation un-
der which it will fail in a real data analysis is when the physical model (i.e., the
simulator) does not describe the scenario of the real data properly. If that happens,
one either adjusts the way to collect real data or modifies thephysical model.

Finally, we note that it remains a future work to develop the theoretical properties
of the proposed wABC approach. In particular, it is of interest to demonstrate the
convergence of the MCMC to a stationary distribution, and show that the resulting
stationary distribution approximates the true posterior distribution with a bounded
error. These theoretical investigations may be done following the arguments/hints in
[12] and [1].

Appendix: More Details of the Foliage-echo Simulator

In this appendix, we provide more details about the simulation model. LetY (t) de-
note a random echo signal to be simulated based on the sonar scene described in Sec-
tion 2. We will simulateY (t) discretely, i.e., simulate the vectory = (y1, . . . ,yv)

T , a
discretized version ofY (t). Here, the sampling frequency ofy is 400kHz. To achieve
this, we first simulatêy = (ŷ1, . . . , ŷv′)

T , which is the Fourier transform ofy in the
frequency domain. We then apply the inverse fast Fourier transform toŷ to obtainy.

Each component in̂y corresponds to a fixed frequency. We denote byfk the fre-
quency corresponding tôyk (thekth component of̂y). In this simulation, we mimic
the frequency range of a horseshoe bat’s echolocation call [28] and only simulate
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the Fourier components corresponding to frequencies in therange of[60,80] kHz.
All other Fourier components are set to zero. Forfk ∈ [60,80] kHz, ŷk is a complex
number in the form of̂yk = ∑s

i=1 Ak,i cos(φk,i)+ j ∑s
i=1 Ak,i sin(φk,i), wherej denotes

the imaginary unit,s denotes the number of leaves considered,Ak,i is the amplitude
at frequencyfk for the ith leaf, andφk,i is a phase delay parameter atfk for the ith
leaf.

The key of our simulation is the calculation of{(Ak,i,φk,i), k = 1, . . . ,v′, i =
1, . . . ,s} based on the physical laws of sound transmission and reflection. This cal-
culation is performed through four steps:

1. Simulate the foliage scene.From the input parameters(θ1,θ2,θ3), simulate the
total number of leaves (denoted bys0), the radii of leaves{ai}, the 3-d co-
ordinates of the leaf centers{(xi,yi,zi), i = 1, . . . ,s0}, and the incident angles
{βi, i = 1, . . . ,s0} following the description in Section 2.

2. Select leaves that contribute to echo.Based on the locations of the leaves and
the sonar, we calculate the sonar’s beampattern gains (i.e., the spatial distribution
of sound pressure) at all leaves, and filter out those leaves that have small gain
values. Therefore, only leaves at locations with large enough sonar gain values
are used to simulatey. We denote the number of leaves passing this filter bys.

3. Calculate amplitudes.The parameterAk,i represents the amplitude correspond-
ing to the wave reflected from theith leaf at frequencyfk. It is calculated based
on the formula:

Ak,i = S(azi,eli, fk,ri)Li(βi,ai, fk)
λk

2πr2
i

. (8)

Below, we will explain the meaning of each factor in (8):

a. The factorS(azi,eli, fk,ri) denotes the sonar beampattern, a function that de-
scribes the spatial distribution of the power density of theemitted wave. The
arguments(azi,eli) denote the azimuth and elevation angles of the line that
connects the origin (i.e., the sonar) and theith leaf center, and the argumentri

denotes the distance between the sonar and theith leaf center. Here,(azi,eli)
andri can be directly calculated from the leaf center coordinates(xi,yi,zi). For
a given sonar,S(·) is assumed to be known. In this study, we used a Gaussian
function to approximate the sonar beampattern. The parameters of the Gaus-
sian function are determined using empirical data. In particular, the Gaussian
function parameters are determined by three variables: thebeamwidth of the
sonar beampattern (−3 decibel), the direction that sonar faces, and the peak
amplitude of the sonar beampattern.

b. The factorLi(βi,ai, fk) denotes the beampattern of theith leaf, which de-
scribes the spatial distribution of the power density of thereflected wave at
the ith leaf. Here,βi is the incident angle of theith leaf,ai is the radius of the
ith leaf, andfk is thekth frequency. The leaf beampattern can be calculated
using complicated physical equations [3]. In this study, weapproximate the
leaf beampattern using
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Li(βi,ai, fk) = P1(c( fk,ai))cos(P2(c( fk,ai))βi),

wherec( fk,ai) = 2πai fk/v, v = 340 (meters per second) denotes the speed of
sound,P1(c( fk,ai))= 0.5003c2+0.6867, andP2(c( fk,ai))= 0.3999c−0.9065+
0.9979. The functionsP1(·) andP2(·) are nonlinear regression functions esti-
mated based on data obtained from numerical evaluation [2].

c. In the factorλk/(2πr2
i ), ri is the distance between the sonar and theith leaf

center, andλk is the wavelength of the emitted sound wave corresponding to
the frequencyfk. Here,λk is a known constant.

4. Calculate phase delays.The phase delay parameters{φk,i} reflect the phase
change at leafi and frequencyfk due to wave propagation. After waves travelri

meters, the phase delay becomes 2πri/λk. As it is a round trip for the sound to
travel from sonar to leaf and from leaf to sonar, the phase delay due to propaga-
tion is 4πri/λk. Another part that contributes to the phase delay is the phase shift
after the wave strikes the leaf. The phase shift depends on the frequencyfk, the
leaf radiusai, and the incident angleβi. To make the computation efficient, we
estimate the phase shift by fitting a nonlinear regression based on data obtained
from numerical evaluation [2], which gives

Phaseshift( fk,ai,βi) = erf(PA(c( fk,ai))(1.57−βi))−2.6343,

where erf(x) = 2√
π
∫ x

0 e−t2dt, PA(c( fk,ai)) = 0.9824c( fk,ai)
0.3523−0.9459, and

c( fk,ai) = 2πai fk/v. Based on these results, the phase delay can be calculated
by

φk,i =−4πri

λk
−Phaseshift( fk,ai,βi) (9)

Steps 1–4 provide the values of{(Ak,i,φk,i)}, based on which we can calculate
the frequency domain vectorŷ. The final time domain signaly is calculated by using
the inverse fast Fourier transform. Before applying the transform, we also applied
a Hann window function to weight̂y, which helps minimize the signal side lobes
(unwanted ripples) in the resulting time domain signal.
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