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Abstract We consider a family of parameter estimation problems wingl func-
tional data. In these problems, the relationship betweeactional data and the
underlying parameters cannot be explicitly specified usindkelihood function.
These situations often occur when functional data arise® & complex system
and only numerical simulations (through a simulator) carubed to describe the
underlying data-generating mechanism. To estimate theamk parameters under
these scenarios, we introduce a wavelet-based approxBagesian computation
(WABC) approach that is likelihood-free and computatibynstalable to functional
data measured on a dense, high-dimensional grid. The prdgproach relies on
near-lossless wavelet decomposition and compressiodticeghe high-correlation
between measurement points and the high-dimensionakadtipt a Markov chain
Monte Carlo algorithm with a Metropolis-Hastings sampteobtain posterior sam-
ples of the parameters for Bayesian inference. To avoidrestpe simulations from
the simulator in the approximate Bayesian computation, @s&an process surro-
gate for the simulator is introduced, and the uncertaintyhefresulting sampler is
controlled by calculating the expected error rate of theeptance probability. We
motivate our approach and demonstrate its performancg tisinfoliage-echo data
generated by a sonar simulation system. Our Bayesian pwstderence provides
the joint posterior distribution of all underlying pararaet, which is otherwise in-
tractable using existing analytical methods.
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1 Introduction

Functional data, such as signals, surfaces, and imageBegreently encountered
in many scientific disciplines. The increased prevalencguch data promotes the
development ofunctional data analysis[20, 7, 11, 29]. While considerable efforts
have been made to the preprocessing [19, 25], estimatioB8{2 B3], and regression
analysis [5, 4, 36, 24, 16] of functional data, existing aymhes primarily rely on
linking functional observations with the unknown parameiga a likelihood or an
objective function. Many applications, however, involaéeirring parameters when
such linkage is implicit or difficult to specify. In this pap&ve consider a family of
parameter estimation problems under such situations.

Figure 1 provides a conceptual demonstration of the estmatroblems we
consider. The black box represents an unknown complexmyttat takes the pa-
rameterf as input and produces functional observatighgt)} as outputs. Our
goal is to estimate the underlying paramefiebased on the observed functional
outputs. If the relationship betwegi(t)} and6 is known, for example, ifYi(t)}

; o
9 Input Blackbox Output 27:

Inferential Goal: Estimate

Fig. 1 A conceptual demonstration of the parameter estimatiobl@nes we consider.

are independent and identically distributed Gaussiangzses with mean zero and
a covariance kernel that depends@&nwe can estimaté through maximum like-
lihood or Bayesian method. There are, however, many othet&ns in which the
true linkage betweef\Y;(t)} and6 is more complicated, and scientists use physical
rules and/or mathematical equations to model such linkKem#lustrate these situa-
tions, we provide two examples—the light detection and ragn¢l_IDAR) data and
the foliage-echo data.

1. The LIDAR data. LIDAR is an optical remote-sensing technique that uses lase
light to measure targets and produces high-resolutiontifumal data. For ex-
ample, authors in [32] considered LIDAR data measured oneaosal cloud.
During the measurement, a point source laser was transhiitte an aerosol
cloud at multiple wavelengths and over multiple time paifitse laser light was
then scattered by the aerosol cloud and reflected back te&eecThe resulting
data can be modeled B4(t,z) = g(t,z) + &(t,z), wheret is time, zis the range
value,Y(t,2) is the random surface that can be obserggdz) is the underly-
ing true signal, andit, z) is the random measurement error. The linkage between
g(t,z) and the parameters of interest is implicit, described byraghdifferential
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subject to boundary conditions. Here, the paraméigrés, and 65 denote the
diffusion rate, the drift shift, and the reaction rate regjwely, which reflect the
physical properties of the laser light reflection. Consedjyethe relationship
between the functional observatidfft,z) and the parameters is implicit, and
one cannot write the likelihood &f(t, z) in terms of the parameters explicitly.

2. Thefoliage-echo data. The foliage-echo data represents a more general situation
when functional data is produced by a complicated systenclwtannot be de-
scribed using a single formula (e.g., a PDE). During the mesmsent, an active
sonar system transmits acoustic waves into tree foliageistree waves reflected
back from the foliages (i.e. the echoes) are received. Whademechanism of
sound propagation and reflection is complicated, we aretatsenulate echoes
using a simulator by applying acoustic laws under simpliisdumptions. De-
tails of the simulation are described in Section 2 and theefyjx. Our goal is
to estimate properties of the foliages, such as the denfihedeaves (i.e., how
many leaves per cubic meter), based on the echoes.

The above two examples demonstrate functional data praduceomplex sys-
tems. These systems have the following characteristigD(& to the complexity
of the underlying physical rules, the parameter estimasi@difficult inverse prob-
lem which may be ill-posed, meaning that the solution to themeter estimation
may not be unique. For example, both LIDAR and foliage-eckem®ples are re-
mote sensing problems in which the data are aggregatiorefletted waveforms
from numerous reflectors; therefore, it is possible thdediint combinations of the
model parameters result in the same/similar data outputthé&rmore, analytical or
numerical solution to these inverse problems is often hafthtl. (2) One can nu-
merically simulate data from a physical/mathematical melg., a PDE or a more
complicated simulator), but the simulation may be componatly intensive. (3)
The data-generation procedure of the complex system iasal@ndom variables,
hence, it produces random functional outputs for a givelosparameters. For ex-
ample, in both LIDAR and foliage-echo examples, randomnessg be caused by
measurement error and/or numerous reflecting facets wiwesdecation, and ori-
entation follow certain probability distributions. (4)i#t often difficult to explicitly
link the functional outputs with the underlying parameteis a likelihood or an
objective function. (5) The functional outputs are ofteraswed on a dense, high-
dimensional grid.

For systems that can be described using ordinary diffexkeatjuations (ODES)
or PDEs, such as the LIDAR data case, estimation approaeisesl lon regularized
optimization, also callegarameter cascading, have been proposed [18, 14, 32, 35].
These methods, however, are not suitable for systems thabtae described by
ODEs or PDEs. In this paper, we propose a wavelet-based dpmate Bayesian
computation (WABC) approach that is applicable to geneoamhglex systems—
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systems that include ODE and PDE as special cases. For disisirewe will use the
more general foliage-echo data as our primary example.

The proposed wABC approach inherits the “likelihood-frpedperty of the tra-
ditional approximate Bayesian computation (ABC) [15, 28pugh bypassing an-
alytical evaluations of the likelihood function. The bypiag is achieved through
approximating the likelihood function evaluation by simtibn. The basic idea is
illustrated in Figure 2. Specifically, instead of evalugtihe likelihood, the ABC
approach first samples a candidate param@terom the prior distributiorvi(6),
then simulates datgX;} from a “simulator” of the system by treatir@lf as the in-
put. If the simulated data is “close to” the observed daectindidate parametéf
is accepted, otherwise it is rejected. A more detailed re@EABC can be found
in Section 3.1.

f* ~ 7r(9) Input Qutput e

If Yes, if No, o N
accept #*| reject §* ;MMW,%« - < -,

Fig. 2 The basic idea of the ABC method. Hefg; } represent the simulated da{&; } represent
the observed data, am-, -) measures how “close” the simulated data are to the obseated d

Despite their flexibility in handling complex systems, asragation-based ap-
proach, the ABC method suffers from low efficiency when theahsion of the
observed data increases and when the “simulator” beconmegudationally expen-
sive. As the dimension of the data increases, the critepidiXi(t)},{Yi(t)}) < &
is harder to be satisfied, resulting in lower acceptance Yateen the “simulator”
becomes moderately expensive, even on the scale of a fewdseper simulation,
accepting 1000 samples 6fwould require hours of calculation, and the compu-
tation quickly becomes intractable when the acceptanesdiaps. Our proposed
WABC approach extends beyond existing ABC by allowing fiomtal outputs mea-
sured on high-dimensional grid, yet still remains compatedlly tractable. It relies
on the near-lossless wavelet decomposition and compressiceduce the high-
correlation between measurement points and the high-diimeality, and adopts a
Markov chain Monte Carlo algorithm with a Metropolis-Hagjs sampler to obtain
posterior samples of the parameters. To avoid expensivelaiions, a Gaussian
process surrogate for the simulator is introduced, and ticertiainty of the result-
ing sampler is controlled by calculating the expected erate of the acceptance
probability.

To our knowledge, the proposed wABC approach is the firstébtinates pa-
rameters in complex systems based on functional outputsune@ on a dense,
high-dimensional grid. It is generally applicable to vaisghysical, chemical, and
biological systems that facilitate numerical simulatio@®mpared with existing
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functional data analytical tools, our approach has thevdhg advantages: (1) It
is likelihood-free. It takes full advantages of the phykimathematical rules that
connect data with the parameter. (2) It can characterizewstinear or nonlinear
data-parameter relationships. (3) It produces the joistgror distribution of the
parameters with various multi-modality and shape strestu(4) It is scalable to
functional outputs measured on high-dimensional grids elsag expensive simu-
lations. Our results for the simulated foliage-echo dataatestrate the effectiveness
of the proposed method in estimating parameters.

2 A Motivating Example: The Foliage-echo Simulation System

While the method we propose is generally applicable to war@mplex systems, it
is initially motivated by the foliage-echo study. The goétlee study is to estimate
the statistical properties of tree foliages, i.e., the dgrd the leaves, the average
size of the leaves, and the average orientation of the lelhased on the echo signals
captured by a sonar device.
Figure 3 shows the working mechanism of an active sonar, twbansists of

an emitter that ensonifies the environment and a receivergbards the returning
echoes. The transmitter emits acoustic waves and the szasillects echoes re-

'Reflected Wave

! ") | | <|Object

brigfnal Wavé'
Fig. 3 The principle of an active sonar. This figure was createddasean online figure available
at the Wikipedia website on Sonar [31] (https://en.wikijearg/wiki/Sonar).

p

flected from objects in the environment. The echo signalg/daformation about
the targets, hence have been used for various identificatidmavigation tasks [27].
In natural environments, an echo signal is the superpositioeflected waveforms
from numerous scatterers, e.g., foliage leaves, rocksememnatural terrains, thus
is highly stochastic.

To study the foliage echoes, we establish a computationdeirto simulate a
natural sonar scene in a three-dimensional (3-d) spacesddree is demonstrated
in Figure 4 (a), which consists of an active sonar sensor aaksger of tree leaves.
The sensor is located at the origin. It emits ultrasonic \8dee/ards the positive x-
axis direction. The tree foliages are uniformly located [,40] x [—2,2] x [-2,2]
region in 3-d. The total number of leaves is determined byl¢la¢ density—the
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(a) The Sonar-foliage Scene 0 X 10%(b) A Simulated Echo Signal
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Fig. 4 The Foliage-echo Simulation. (a) The sonar scene in 3-d.cble indicates the sound

intensity leaves receive/reflect (scaledadl]). (b) A simulated echo signal with leaf density of 30
(in number of leaves per cubic meter), leaf radius 6101 (in meter), and leaf orientation of 45
(in degree). (c) A demonstration of the upper and lower epes of the waveform. (d) The echo
envelope extracted from the echo signal in (b).

number of leaves per cubic meter, denotedhyThe leaf shapes are approximated
by planar circular disks with radius (denoted &yrandomly sampled from a nor-
mal distributionN(6,,0.16,), where6, denotes the mean radius. The orientation of
each leaf relative to the sonar is determined by two anglgshg angle between
the leaf normal vector and pulse direction (the positivecis-direction), which fol-
lows a truncated normal distributid(3|6s,5) 11090, With 83 the mean angle
and 5 the variance; and (2) the angle that describes theomtaitthe leaf normal
vector around the pulse direction clockwisely, which feléoa uniform distribution

in the range of[0,2m). Based on these two angles, we further calculate the inci-
dent angle—the angle between the leaf’s normal directiahtla@ sonar-leaf center
line. We denote the incident angle By With these setups and the specification of
the acoustic properties of the sonar, echoes are simulaliesving acoustic laws

of sound emission, propagation, and reflection [3]. Mordtézal details of the
simulator are described in the Appendix.

The above simulation model constitutes a physical systeimtiee inputs: the
leaf density 61), the mean leaf radiug®4), and the mean leaf orientatio6s). The
output is an echo signal as demonstrated in Figure 4 (b). Titpbecho signal is a
temporal waveform measured from 0 to 60 milliseconds witaragging rate of 400
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kHz. The total number of measurement points iS00 for each echo. The parame-
ters(61, 62, 83) summarize the statistical properties of the foliage targehterefore,
estimating these parameters based on the echo signald@sais knowledge of the
targets. While the current study only involves echoes sateal from a physical
model, our ultimate hope is to use the proposed estimatiproagh to infer target
properties based on echoes collected in a real scene.

Directly modeling the echo signals is difficult because ttleoes contain infor-
mation about both emitted signals and the target propegiese sound reflection
from stationary targets does not change the carrier fre;yueithe emitted signal,
information about targets is contained in the amplitude atatibn, which is cap-
tured by theenvelopes of the echo signals. We therefore perform a preprocessing
step to extract the echo envelopes, and use this data fomalysés. The envelope
of a signal is the boundary curve within which all amplitu@dues of the signal are
contained. A conceptual demonstration is shown in Figuig 4The envelope of an
echo retains the target-specific information by capturireglow frequency ampli-
tude variations, which makes it an ideal representatiortbbeignals. In the sonar
echo data, since the upper and the lower envelopes are abyaysetric, we only
consider the upper envelopes in our data analysis. The gwealignal extracted
from the echo in Figure 4 (b) is shown in Figure 4 (d).

3 Wavelet-based Approximate Bayesian Computation

The foliage-echo data example demonstrated in Section r2septs a family of
parameter estimation problems involving functional datahese problems, func-
tional data is related to the parameters of interest threugbmplex system guided
by physical or mathematical rules. As a result, one cannpliatty write the like-
lihood of the functional outputs as a function of the pararetTo facilitate pa-
rameter estimation under these scenarios, we propose detvbesed Approximate
Bayesian Computation (WABC) approach. The logic behindntlaén concepts in-
troduced in Sections 3.1-3.4 and their connections with ®@A®e illustrated in
Figure 5. Section 3.1 reviews the general ABC approach, lwisithe foundation
for the proposed wABC approach. In order to facilitate fimeal outputs measured
on a dense, high-dimensional grid, we represent functideial through wavelet ba-
sis expansion and perform a wavelet compression to reducendion; details are
in Section 3.2. For simulators that are computationallyesgive, we further intro-
duce the Gaussian process surrogate for the simulator bdesfast simulation; this
is discussed in Section 3.3. Sections 3.1-3.3 constit@eémeral framework of
WABC. Finally, in Section 3.4, we introduce a method to cohtine uncertainty of
the decision-making in wABC.
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Fig. 5 The logic behind the concepts introduced in Sections 34laBd their connections with
WABC.

3.1 Review of Approximate Bayesian Computation

Let Y denote a random element whose realizations are the obsdatadind let
6 denote a parameter that determines the distributiovi.dh a typical Bayesian
setup, one computes the posterior distributida|Y) 0 r7(Y |0) 11(0), wherert(Y|6)

is the likelihood that relate to the paramete) and7i(8) is the prior distribution
for 8. Approximate Bayesian Computation (ABC), initially prageal by [17], aims
to approximate the posterior distributiar{8|Y) without explicitly specifying the
likelihood r1(Y|6). In particular, we assume thatY|68) is unknown, but there is a
simulation model, often denoted b¥(X|6), that produces simulated daxagiven
6*. We sometimes cak the pseudo-data. Her8; is an arbitrary sample from the
prior distribution7r(8). If X is “close to”Y, we retain6* as a sample oft(8]Y),
otherwise, we rejedd* and repeat the procedure with a n8iv This procedure, as
illustrated in Figure 2, will be repeated until the desireaoaint of “good samples”
is collected. In ABC, we often use a distance meag\fre) to determine how close
XistoY. For example, in the univariate case, by lettp(K,Y) = |X —Y/|, we will
retain6* when|X —Y| < ¢ for a smalle.

The above procedure indeed produces samples for the disribr(6|{p(X,Y) <
€}), a distribution that is identical tar(6]Y) whene = 0 (i.e., X =Y). However,
since{X=Y } happens with probability O for continuous random variahileprac-
tice, we can only require(X,Y) < ¢ for a small discrepancy, which results in
m(6]{p(X,Y) < &}). The distributionrr(6|{p(X,Y) < €}) serves as an approxima-
tion of 1(0]Y) wheng is small, i.e.,

n(0lY) ~ n(8|p(X,Y) < ¢g), for a smalle.

When multiple samples are observed, we index the dat¥ipy=1,....n
and denoteY = {Y1,...,Ya}. In this case, ABC can be performed by sampling
X ={Xy,...,Xm} based on eacB*, and defing(-,-) based on a summary statistic
S() of the samples. I§(Y) is a sufficient statistic fof, thenS(Y) contains all infor-
mation abou®, thereforer(0]Y) = m(0|(Y)), which can be shown by applying
the Fisher-Neyman factorization theorem [13]. The rigatwh side of the equation
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1(6|S(Y)) can be further approximated g 0| p(S(X), XY)) < €) using the ABC.
For example, if{Y1,...,Yn} is a random sample from a Bernoulli distribution with
meand, then one can defing(X,Y) = [Y — X|, whereS(Y) =Y is the sample mean,
a sufficient statistic fof.

Markov Chain Monte Carlo for ABC. The traditional ABC procedure relies on
accepting* whenp(S(X),S(Y)) < €. This procedure can be embarrassingly ineffi-
cient because of two reasons: (i) A good sufficient statisticbe hard to find. Some-
times one has to use the original data set as the sufficigistista(ii) The acceptance
rate can be extremely low especially when the stat&ticor the parametefl is of
high dimension. Various alternative algorithms have be@pgsed to improve the
computational efficiency of ABC. Here, we review an MarkoaithMonte Carlo
(MCMC) algorithm using the Metropolis-Hastings (MH) sampMore discussions
of the MCMC algorithm for ABC can be found in [30, 6, 1, 22], angothers. First,
we transfer the acceptance criterpf8(X), (Y)) < € to a probability density func-
tion 1 (S(Y) | S(X)) controlled by the discrepancy parameteFor example, with
an independent Gaussian assumption, we may write

e (S(Y) | (X)) = (2"8)*J/29XP{—2%2(5(X) =S(Y)T(SX) =S(Y)}, (1)

where] is the dimension of the sufficient statis8¢ ). With this representation, we
can approximate the likelihood(S(Y) | 6) by (S(Y) | 8), and the latter can be
approximated using the Monte Carlo integration

H
T (S(Y) [ 0) =/Tts(S(Y) | S(X))T(S(X) | 8)dS(X) ~ % Zlﬂs(S(Y) [SX@)). @
=

Here,{X(9>,g =1,...,H} denoteH samples of the pseudo-data generated from the
simulator,7(X | 8). Note that we do not need to evaluatéS(X) | 8) in equation
(2). We just need to sample from it. Based on the approximitelihood, we can
design a MCMC algorithm by assuming an proposal distrilngi®*|6). We accept

the proposed* with probability

o m(0%) 1 (S(Y) | 6)q(6]6%)
a(6716) = ”"”{1’ n(0)7e(S(Y) | 9)a(6°]6) }

The above MCMC algorithm provides improved mixing for thesfasior samples
than the traditional rejection-based ABC algorithm. Hoareit requiresH repeated
calls to the simulator in order to compute the approximaiticeguation (2), and this
has to be performed during each MCMC iteration. Heteeeds to be large enough
to guarantee a good approximation, elfj~ 1000 is reasonable ifi(S(X) | 6) is
a Gamma distribution. Repeated sampling can be a compughtarden when the
simulator runs slow. In Section 3.3, we adopt a Gaussianggssurrogate (GPS)
for the simulator following the idea of [1], which substaily reduces the number
of simulation calls.
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3.2 Wavelet Representation and Compression of Functional Data

While the idea of ABC is straightforward to follow, it can beeificient due to a
number of assumptions and approximations that may not by sasisfied. One
assumption is the existence of a sufficient statistic forgammeters of interest.
Given a random sampM = {Y1,..., Yy}, the determination of a sufficient statistic
S(Y) for 6 is often difficult without knowing the distribution of;. Although one
can always choose the data itself as the sufficient statétiog so only makes the
specification of the distance measyre, -) extremely difficult (because the dimen-
sion of Y is high). This issue is particularly severe for high dimensil vectors
and functional data. In our foliage-echo example, an eckielepe is of dimension
24,000, therefore, the dada can be written as a-by-24,000 matrix. Given that the
relationship between the data and the parameters is imyplatermining a sufficient
statistics fon( 6y, 6», 63) givenY is practically intractable.

To facilitate the efficient performance of ABC for functidriata measured on
a dense, high-dimensional grid, we adopt a strategy thaeweeh de-correlation
and compression so that functional observations can benp@ar®usly repre-
sented in a much lower dimensional setting. In particular,represent the func-
tional data by a multi-scale wavelet basis. Given a set ofirsuble wavelet ba-
sis functions{yj;j = 1,...,J, k=1,...,Kj} and a scale function (the father
wavelet) {¢o;k = 1,...,Ko}, we can expand a functional observatig(t) by
Y(t) = Z]‘lzozrildjkwj'k(t). Here,djx is the wavelet coefficient at scajeand lo-
cationk. For functional data measured on an equally spaced gril réfpresenta-
tion is lossess, i.e., providing an exact representation of the origingadahere-
fore, {dj} contain the same amount of information¥$) thus can be treated as
a sufficient statistic fof. We can denote the sufficient statisticsYohsS(Y) = D,
whereD = (dijk) is a n-by-K matrix andK = Zf:on- In general, the wavelet
transformation is not the only option. It is possible to domst lossless trans-
forms with other basis functions (e.g. Spline or Fourierdsqsor construct an ap-
proximately lossless transformation with a baldz(t),k = 1,...,K} that satisfies
IY(t) — TK_; dkBx(t)| < & for all t and a smalb.

The wavelet representation has two advantages: the ceetf¢d;} are sparse,
meaning that most coefficients are zero or close-to-zetbtreay are approximately
uncorrelated. These properties bring two types of conveei¢o the specification
of the distance measure in ABC. First, since componer{idji} are approximately
uncorrelated, the conditional distributiag(S(Y) | S(X)) can be specified follow-
ing equation (1), i.e., assuming that componentS@af) (or S(X)) are mutually
independent of each other. Second, the sparsity of the ataweéfficients makes
the wavelet compression feasible.

Wavelet Compression. For many high-dimensional problems, representing the
datain a much lower dimensional space brings tremendowgo@nce to data stor-
age and processing. This is also true in the ABC contextDl-et(d; jx) denote the

by K matrix of wavelet coefficients, and thi& row corresponds to the wavelet coef-
ficients of theith functional observation. Sind2 is sparse, many componentsbf
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are zero or close-to-zero, therefore does not contain gakierfiormation about the
parameter. Wavelet compression removes zero or closertoeomponents while
retaining the large components. The compressed matrixqtdérbyD, is nearly
lossless, thus can be used as an approximately sufficigististéor 6. To compress
D, we retainK; columns ofD so that the proportion of energy retained is greater
than (or equal to) a threshofd (e.g.,&, = 0.999) for each function. Here, the pro-
portion of energy retained for a functidft) is defined by (; igc, &/ 3 (j.1 &k
whereC; is the set of scale and location indices that corresponditorots retained
inD.

The wavelet representation and compression introducekgirovide an effec-
tive way to transform the functional observatigrno wavelet coefficient matri
in the wavelet domain, and to reduce the dimensiob &fom n-by-K to n-by-Kj.
The compression also has the effect of removing high frequeaise in functional
data. The reduced dabawill be treated as a sufficient statistics ¥bfto be used in
the MCMC sampling scheme for wABC.

3.3 A Gaussian Process Surrogate for the Simulator

As discussed in Section 3.1, although the MCMC method cavigedetter mixing
than the traditional rejection-based ABC method, it reggisampling from the sim-
ulatorH times during each MCMC iteration. Even if each simulatiofygaquires a
moderate amount of time, running a large amount of MCMC itens can be com-
putationally intractable. For example, our foliage-ecimagator takes 2 seconds
to simulate one echo envelope. If the MCMC algorithm has aejgtance rate of
30%,H = 100, and the number of independent samples ism= 3, the expected
time needed to obtain 1000 posterior sample8 &f around 639 hours (26 days).
Itis possible to use parallel computing at the stage of camguz: (S(Y) | 6), i.e.,
during each MCMC, théd samples oiX (which containHm echoes) can be per-
formed in parallel using a multi-core computing server. tdwer, it may still take
days to obtain 1000 posterior sample®diecause the number of computing cores
one has access to is often limited. The modern graphics gsoge units (GPU)
based computing system provides far more computing coB3sljat each core can
only deal with relatively simple calculation, thereforeynaot be suitable for the
large-scale matrix calculations required by our simulatéhen the speed of the
simulator cannot be improved any further, a good solutido edopt a strategy that
requires less calls of the simulator. We now introduce a G $he simulator fol-
lowing the idea of [1]. GPS can substantially reduce the remolbsimulation calls
in the MCMC.

We explain the GPS in the context of the foliage-echo exanfu@pose that
J columns ofD are retained after wavelet compression. Dgt= (d)l,, e ,dj) de-
note then-by-J matrix of wavelet coefficients after compression, wherehedﬂp
is ann-by-1 vector. In the foliage-echo example, The randomnegké leaf lo-
cation, orientation, and radius causes random fluctuatiottse n samples. These
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fluctuations reflect the leaf-specific information, i.e.aeixlocations, orientations,
and radii of leaves in a scene, which is not relevant to theufadjon parameters
(61,6,,63). Therefore, we remove the random fluctuation by averagiri elél
across its1 entries, resulting in a scald_yl. Denote the averaged wavelet coefficients
by Dy = (dy,...,d))T. We will useS(Y) = Dy in the analysis of foliage-sonar data.
Since the wavelet coefficients [y are approximately independent of each other,
we will calculate the Iikelihoodrg(@ | 8) for eachj independently. We assume that

—dl+e, e ~N(0e?). 3)

<

Here,d:j( is the jth averaged wavelet coefficients based on the simulatedlsamp
X = {X4,...,Xm}. Model (3) is equivalent to assuming tha{(dy | dt) corresponds
to aN(dy, £2) distribution. We further approximate the simulator disttion m(c |

6) by assuming thaty, follows a Gaussian process (GP) regression model:

i) = fj(8)+rj, fj(6) ~GP(0,kj(6,0%)), rj~N(0,0?), (4)

wherefj(8) is an unknown GP with mean zero and a pre-specified covarlkaree
nelk;(6,6*). For example, a commonly used covariance kernel is the edue-
ponential kernek;(68,6%) = @?exp{—||6 — 6*[|?/(217)}. Since both (3) and (4)
induce Gaussian distributions, we can analytically calteutg (dy | 6) by integrat-
ing outd. This analytical integration avoids the need to performragimation
using Monte Carlo integration as described in equation®) call the GP regres-
sion model (4) a GPS. The main idea is to train a GP model ondeofji@ and use
it to replace the simulation distributiam (d) | 8). This strategy avoids the need of
frequently calling the simulator during the MCMC iteration

Specifically, we calculateg (dy | 8) following a three-step procedure.

1. Produce a grid of value® = (6,...,6)" on the domain 0B, generateX =
{X1,...,Xm} ateach grid point, perform wavelet decomposition and cesgon
of X, and average the wavelets coefficients acrossthamples. This results in
a list of “input-output” pairs{(6,d. ;),i = 1,...,A}, which will be treated as the
training data for estimating the fu’nctidm(@).

2. Given a pair of valueg8*, 8), we will calculate the GP predictive distribution
on(6*,8) using the conditional distribution, which giVBB{Hgg*.eN@, 239*.(9)‘@),
where

i Kk g+ -1
i _ [ Kewo 2
“(9*.9)\@ = ( ke.@ ) (KO7@+O—j I) d>J<a (5)
T
i Ko+ g+ Ko+ K g+ —1( Kkg+
j _ [ Keror Kero ) [ Kero 2 6*.0
*(6-0)0 = ( ke,o+ koo ) ( ke,0 > (Koo +afl) < ke, > - ©
Here,d} = (d_)"(’l,...,d_’pr)T is anA-by-1 vector of training pointkg- o is a 1-

by-A vector consisting of kernel evaluationstitand components i®, Kg g is
an A-by-A matrix consisting of kernel evaluations at two componem®, and
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ko< o =k(6%,0). We treat the above GP conditional distribution aaraiogate of
the simulator. In Figure 6, we compared the prediction gerénce of the GPS
at a test value of; with the sample estimate obtained from data directly sachple
from the simulator. Here, we have fixé&d and 6;, treatingf; as the parameter
to be estimated. Figure 6 demonstrates that the GPS givesasate prediction
as the sample estimates (which are based on 100 samplegpagyrlO training
locations on the support ¢k .

GP estimate (¢, = 28, idx = 1) Sample estimate (¢, = 28, idx = 1)
0.12 1 0.12 1
017 017
0.08 1 0.08 1
0.06 0.06
0.04 1 - 0.04 1
®  GP predict (mean) ®  Sample est.(mean)
0.02 | GP predict (2*std) || 0.02 | Sample est.(2*std)
10 20 30 40 50 10 20 30 40 50
01 . leaf density 91 . leaf density

Fig. 6 A one-dimensional demonstration of the GP prediction usigsonar-foliage simulator.
Here, we have fixe@, = 0.017 andf; = 45, and treate@; as the unknown parameter. Left panel:
the gray lines are the first wavelet coefficientrof= 3 simulated echo envelopes At 10 grid
points on the domaifb, 50]; the black lines are the average of the three gray lines; tgemta
dot and line are the predictive mean and the confidence alténean+ 2std) calculated using the
GPS. Right panel: the gray lines and the black lines are tine s& the left panel. The magenta dot
is the sample estimate of the mean, and the magenta bar isitfidence interval based on 100
echoes sampled directly from the simulator.

3. Basedonthe GPS, the Iikelirlocmid—)‘, | 6%) andne(d—)’, | 6) can be approximated
by N(d} |, o +€2) andN(dy| bt o+ €2) respectively, whergul! ul Ty is

a sample fronN(u(je*’e)‘e, Z(je*,e)\e)- The acceptance probability of the MCMC
can be calculated by
m(6*) [P_y N(dY )T, o2+ £2)q(6] 6"
a(e%):mm{l’ OIMLNG g of + a0l
11(0) Mj—1 N(dy| g, 07 + €2) q(6+|0)

Note that if the functiorf;(-) is known, we can replaq&:g,;T and/.l(’;r by the true val-
ues offj(6*) andf;(0) respectively, in which case(6*|0) is a deterministic value.
However, since we have used GPS, the randomne;.<z§:ro:f¢1nd/.léfr introduces un-
certainty toa (6%|0). This uncertainty may cause an error for decision-making in
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the MCMC algorithm. Therefore, we need to control the uraiety so that the
probability of making a wrong decision based 0(6*|0) is reasonably low. We
discuss this issue in Section 3.4.

3.4 Control the Uncertainty of Decision-making in wWABC using
GPS

The control of uncertainty in the GPS-based MCMC algoritlenves two purposes:
to control the error rate of making decisions (e.g., thegleniof accepting/rejecting
the proposed*) based on GPS in the MCMC algorithm, and to provide a strategy
of refining the GPS of the simulator. The main idea is to keapragtraining data
to the GPS at each iteration until the expected probabilitynaking the wrong
decision is less than a pre-specified threstéo(d.g.,& = 0.3).

In particular, sinceyé,’:r andue’Jr are random samples from the GRSn equation
(7) is a random variable. In stead of making decisions basednea value, we
produceL samples{a<'>,l =1,...,L}, and calculate a summary statisfidrom it.
We will accepto* if u< ¢ and rejecH* if u> . Here,u~ Unif(0,1).

Now we can calculate the probability of making a mistakedwlhg the above
decision rule. Iu < ¢, we will accept9*, and this will be a wrong decision if indeed
{u> a}, in which case we should rejeét. The probability that this situation
appearsis 4,.¢}Pr({u> a}). Similarly if u> , the probability of making a wrong
decisionis 1, z,Pr({u< a}). Therefore, given a value of the overall probability
of making an error is

VVU(G) = 1{u<z}Pr({U > 0!}) + 1{u25}Pr({u < a}), un~ Unlf(O, 1)

We can further integrate ouwtfrom the above conditional error function to obtain
the marginal probability of making an error, i.e.,

wia) = [ W@

The above error probabilitw/(a) is minimized when{ = median(a); a detailed
argument can be found in the Section 3.1 of [1] and the reterémerein.

The above result enables us to control the probability ofingat wrong decision
in the Step 3 in Section 3.3 by calculatingL times, each with different samples
of uéf and ug,’T. This calculation is very efficient since obtainibhgsamples from
a multivariate normal distribution is fast. Based on the impkes ofa, we set{ to
be the sample median of and calculat&V(a) numerically. IfW(a) > &, we will
add more training points (i.e., creating a denser grid orstipport of6) and repeat
Step 2-3 in Section 3.3 again, unfil(a) < &. We finally accept the proposedt
if u< ¢ for a randomu sampled from Unif0,1). This completes one iteration of
the MCMC. The above adaptive strategy allows us to adjusti@training points
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for the GPS so that the probability of making a wrong decissorontrolled during
each MCMC iteration.

4 The Algorithm and Parameter Settings

We describe the algorithm for the proposed wABC approachéncontext of fo-
liage echo data. Detailed steps are described in Algorithraldorithm 1 is an
approximate MCMC algorithm because we have used GPS to xippate the sim-
ulator. These samples are used to approximate samples fi@sirhulator. With
GPS, we only need to call the simulathrtimes at each iteration under the con-
dition W(a) > &. As more training points are added, the GPS will become more
reliable. Eventually, there will be no need to call the siataf at all during the
MCMC iterations.

Algorithm 1: An MCMC Algorithm for wavelet-based ABC using GPS.

Input: Y ,A/A,0,¢,&,q9(- | -), {ajz}, m(8), m, N, k(-,-), the simulator.

Step 1:Perform wavelet decomposition and compressiolY do getDy.

Step 2:Create a grid® of sizeA. Generate initial training points from the simulator at
each grid point ir©. Perform wavelet decomposition and compression on ¥ach
get{(8,d),),i=1... Al forj=1,...,J.

Step 3:Run the following MCMC iterations.

for i=1toN do

Proposef* from q(6* | 6);

while W(a) > & do

Step 3.1: Calculate the mean and covariance (6t 8) following (5)-(6) for all j,

i=1....3 _ _

Step 3.2: Generaté samples ofu}" andu) " and calculatga®),1 = 1,...,L}
using equation (7);

Step 3.3: Set{ = mediari{a"),| = 1,...,L}) and calculate the probability of

making a wrong decisiow (a);
if W(a)> ¢ then
Add A grid points to©, generate new training data at each newly added grid
point. Add these points to the existing training points;
end

end
Sampleu ~ Unif(0, 1);
if u<{ then
| Setf =0%;
end
Saveo,

end
Output: N posterior samples .

For the numerical stability of the algorithm and the coneeice of setting param-
eters, we recommend to rescale the compressediadad the simulated features
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Dy using a common set of constants so that all values are in ¢asigtale (e.g.,
[—1,1]). The scaling constants can be estimated from the obseatadelg., using
the minimum and maximum urf{, for eachj). Similarly, in the GPS calculation, we
recommend to scale &l parameters to a common range (e[@.1]).

Parameter settings.There are two types of model parameters we need to spec-
ify in the wABC algorithm—those in the GPS and those in the MCllgorithm.
Generally speaking, we suggest to determine parameteiB3$ checking the GP
prediction at somé values, so that the resulting GP prediction is comparalte wi
that obtained by directly sampling from the simulator. Fg6 provides an exam-
ple of such comparison. Furthermore, we suggest to tuneredeas in the MCMC
algorithm by controlling the expected performance of thgodthm, such as the
acceptance rate of the Metropolis-hastings sampler. Irt falaws, we introduce
some specific guidelines.

The parameteg in equation (7) is a small value that controls the expected di
crepancy between simulated and observed data. We suggsst gosmall value
(e.g., 1e-4) for. In the GPS MCMC algorithm, it is possible to set= 0 as done
by [1]. The parameter«sojz} in (4) control the noise level in the GP regression. We
found that these parameters may substantially influengertitictive covariance of
the GPS, i.e., the covariance in (6). A reasonable way tcmiﬂue{ojz} is to take

the empirical variance af}, (calculated across tha replicates oiﬁx) and average
them across all grid points i®. The parameters in the GP keriiél, -) also play
important roles in determining the predictive mean and dewae of the GPS. We
have used the squared exponential kekped, 6*) = ¢ exp{—||6 — 67||?/(217)}

for eachj. In the foliage-echo data analysis, we have scaledbtiparameters to
[0,1] and scaled altl}, j = 1,...,J} to [-1,1]. Under these setups, we found that
settingg; = 0.1 andtj = 0.4 is a reasonable choice. In practice, we recommend the
users to start with the one-parameter settings (i.e., fizlhgther parameters) and
plot the predictive error bar like shown in Figure 6. Thisg®eVisualize the effect
of the parameter setups. The parame&em, N, A, andA can be tuned based on
the computation speed and the acceptance rate of the MCMCtalg.

In general, the accuracy of the posterior estimation camipeaved by increasing
the sample size in datd, reducing the thresholé for the probability of making
an error in the MH sampler, increasing the size of the trairgrid for GPS, and
increasing the number of training sampeat each GP training grid.

5 The Analysis of Simulated Foliage-echo Data

While our ultimate goal is to apply wABC on real foliage-eataia collected under
experimental or natural environments, at this stage, takedata has not yet been
made available. Therefore, in this analysis, we will onlg\pde the parameter es-
timation result based on echoes simulated from the folesge simulation model
described in the Appendix. Because the true parametersarerkin this simula-
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tion setup, our analysis provides the proof-of-conceptiierfeasibility of WABC
for complex systems.

We applied the proposed wABC approach to a set of foliage-etta simu-
lated from the sonar-foliage simulator. The data consiéts © 100 echo enve-
lope signals sampled independently from the simulator utite true parameter
(61,6,,63) = (30,0.017,45). We aim to solve the inverse-problem by estimating the
three underlying parameters based on the 100 echo enveltjllesassuming that
the domains of the parameters &ec [5,50], 6; € [.005,.05), and6s € [1e-490].

We applied the wavelet transformation to each echo envelejmg Daubechies
wavelets with the maximal number of vanishing moments béih§.e., db12). The
number of resolution levels is set to be- 20, and the boundary extension mode is
set to be periodic. The wavelet decomposition transforrmk eaho envelope from
the time domain (with 24000 measurement points) to the wavelet domain (with
24,008 wavelet coefficients). We further applied wavelet cogspion by retaining
01 = 0.999 of the total energy. This reduces the dimension of theslgaeoefficients
from 24,008 to 992. We then applied MCMC with GPS using Algorithm 1. We
adopted a random walk proposal by setting the proposallalisivnq(6* | ) to be
a truncated log-normal with a scale paramet860To train the GPS, we segmented
the domain of 81, 6,, 83) using a 10< 10x 10 equally-spaced grid. This gave a total
of 1000 training points for the GPS. The number of repeatetpézs inX on each
grid point was set to ben = 3. The kernel parameters for the Gaussian process
kernel function were set to bg = 0.1, 1; = 0.4. Thee parameter in the MCMC-
ABC was set to be 1e-4 and tleparameter in the GPS procedure was set to be
0.3. These setups resulted in an acceptance rate of 35% in th&édWIH sampler.
We monitored the behavior of the posterior samples by cingdkie trace plots and
the autocorrelation plots. We tested the convergence afithims by calculating the
Geweke's Z-statistics [8]. We ran 300 MCMC iterations and took the first 1M0
iterations as the burn-in period. Summary statistics ofgammeter estimation,
including the posterior means and the 95% credible inter¢@ls), are listed in
Table 1. Table 1 shows that all three Cls cover the true valtifee parameters.

Table 1 The posterior estimation for the three parameters in thagetecho data.

6 0> 63
Meaning density in 3-d mean radius mean orientation
Unit counts per meter degree
Domain 5, 50] [.005, .05 [1e-4 90
True value 30 .017 45
Post. mean 285 .018 4257
Post. Cls [17.1,419 [.017,.026 [10.1,727)

We further summarized the posterior distribution of parereusing 1-d and
2-d marginal kernel density estimations. In Figure 7, we the heatmaps of the
2-d kernel density estimations for each pair of the pararaetdne gray dots on the
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heatmaps are the scatter plots of the posterior samplesaleofal5 000 samples
after the burnin period). The white cross sign on the heasmagrk the true values
of the parameters. The histograms on the top and right-hided$ each heatmap
show the marginal distributions of the parameters (supgssgad by the 1-d density
estimations). The red vertical bar in each histogram irtdshe location of the
posterior mean, and the red dashed bars indicate the 95%blerederval.

From Figure 7, we observe that the posterior distributiohthe parameters
demonstrate skewed, multi-modality shapes. In partictharmarginal distribution
of the leaf size is skewed to the right, and the leaf orieatatiemonstrates two
modes, one near 10 degree and the other near 40 degree.rfmotbethe 95%
Cls for the leaf density and the orientation are fairly witdide Cls indicate high
uncertainty in the point estimates. These results are natmise, because they re-
flect several characteristics of the foliage-echo simaitatFirst, the echo signals
are highly stochastic—using 100 echoes samples to recbgestétistical proper-
ties of the foliages is a challenging task. Second, the mutdtilal behavior of the
posterior distribution reflects the non-identifiabilitytnege of the inverse-problem,
i.e., different combinations of the leaf density, size, anéntation could result in
similar reflection behavior of the sound wave. Therefore ghlution to the inverse-
problem is not unique. Despite these challenges, our peape#\BC still provide
a comprehensive view for the distributions of the undedyparameters under a
moderate number of samples—a result that is intractablginifguany other existing
statistical approaches. These results demonstrate tmeiggref solving ill-posed
inverse-problems even when the data is highly stochastio&high-dimension.

6 Discussion

We have proposed a general simulation-based approackl egd8C to estimate
the parameters of a complex system with functional datautsitprhe proposed
method relies on simulating from the complex system to edénthe parameters
of interest, which avoids the difficulty of specifying theriactable likelihood. We
accommodate functional data measured on a dense, higmsional grid by com-
bining wavelet decomposition with compression, and aehgsalable computation
using a Gaussian process surrogate to the simulator. Gereimde is based on pos-
terior samples of the underlying parameters which can be tesezcover the joint
distributions of all parameters.

The proposed WABC approach is generally applicable to aeldagnily of
inverse-problems associated with complex systems, sucolagg differential
equations based on noisy data and estimating parameterfiofogical system.
However, it requires a “simulator” to generate pseudo-deta simulator needs to
resemble the real system with sufficient accuracy. Othervegen if the wABC is
tuned to perform well with simulated data, it may fail on readrd data.

While the GPS has the benefit of avoiding repeatedly callmgsimulator, the
computation of GP may become inefficient when the numberidfgpints goes be-
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Fig. 7 Results for foliage-echo data analysis. The heatmaps a2-thd&ernel density estimations for each pair of parameteagf: 6, versus6,; middle: 6,
versus6s; right: 63 versus6;. The gray dots on the heatmaps are the scatter plots of therjppssamples. The white cross symbol on the heatmaps marks
the true parameter values. The histograms on the top andgtitehand side of each heatmap are the marginal distribsitfbistograms superimposed by the
1-d kernel density estimations) for each parameter. Theveeital bar in each histogram indicates the location oftbsterior mean, and the red dashed bars
indicate the 95% credible interval.
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yond 1000. The main difficulty comes from the evaluation @fithverse covariance
matrix in the predictive calculation, i.e., equations (6)- Our future work involves
replacing the GPS by a local-GPS, i.e., using only a portiothe training points
to predict the mean and standard deviatio(@t 6). A promising strategy is to use
the K-nearest neighbor approach. Similar ideas have bemtedi by [9] and [10]
in GP regression.

While we have focused on systems with highly-stochastictional outputs, the
proposed framework is also suitable for deterministicaystin which the simulator
yields a deterministic functional output subject to randomasurement error. An
example is the LIDAR data introduced in Section 1. In thesegasions, we just
needto seh =1 andm= 1 in wABC. These problems are often easier to solve than
the stochastic systems considered here.

Although ABC brings substantial convenience by enablikglihood-free infer-
ence, it is well-recognized that ABC suffers from “curse ohdnsionality” when
the number of parameters increases. That is, it becomes dificellt to accept a
proposed parametér as the dimension of the parameter space increases [26]. We
adopted an MCMC algorithmin this paper, which has been egto attenuate the
low acceptance rate issue. However, it remains generalyttrat a larger number
of parameters is more expensive to be estimated using ABEebapproaches.

Though a real data analysis is not included in this papersououlation study
provides a solid validation of the statistical componenthaf method. Given that
the proposed method performs well under simulated settiregonly situation un-
der which it will fail in a real data analysis is when the plogdimodel (i.e., the
simulator) does not describe the scenario of the real daijaeply. If that happens,
one either adjusts the way to collect real data or modifiepliysical model.

Finally, we note that it remains a future work to develop thextretical properties
of the proposed wABC approach. In particular, it is of ingtr® demonstrate the
convergence of the MCMC to a stationary distribution, anolsthat the resulting
stationary distribution approximates the true posteristrithution with a bounded
error. These theoretical investigations may be done fatigwhe arguments/hintsin
[12] and [1].

Appendix: More Details of the Foliage-echo Simulator

In this appendix, we provide more details about the simatathodel. LetY (t) de-
note a random echo signal to be simulated based on the semardescribed in Sec-
tion 2. We will simulateY (t) discretely, i.e., simulate the vectpe= (y1,...,w)", a
discretized version of (t). Here, the sampling frequencyyfs 400kHz. To achieve
this, we first simulat§ = (V1,...,%)", which is the Fourier transform gfin the
frequency domain. We then apply the inverse fast Fouriesfaam toy to obtainy.
Each component i corresponds to a fixed frequency. We denotepthe fre-
guency corresponding & (thekth component of)). In this simulation, we mimic
the frequency range of a horseshoe bat’s echolocation2gillgnd only simulate
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the Fourier components corresponding to frequencies imathge of[60,80] kHz.
All other Fourier components are set to zero. e [60,80] kHz, Vi is a complex
number in the form ofic = 574 AcicoS @) + j 371 Axi Sin(¢i), wherej denotes
the imaginary units denotes the number of leaves considergdlis the amplitude
at frequencyfy for theith leaf, andg; is a phase delay parameterfatfor theith
leaf.

The key of our simulation is the calculation §fA;, @), k=1,....,V,i =
1,...,s} based on the physical laws of sound transmission and reffecthis cal-

culation is performed through four steps:

1.

Simulate the foliage scenel-rom the input paramete($;, 6», 65), simulate the
total number of leaves (denoted Isy), the radii of leaves{a;}, the 3-d co-
ordinates of the leaf centef$xi,vi,z),i = 1,...,%}, and the incident angles
{B,i=1,...,5%} following the description in Section 2.

. Select leaves that contribute to echdBased on the locations of the leaves and

the sonar, we calculate the sonar’'s beampattern gaindlfiesspatial distribution
of sound pressure) at all leaves, and filter out those ledsshtve small gain
values. Therefore, only leaves at locations with large ghaonar gain values
are used to simulatg We denote the number of leaves passing this filtes. by

. Calculate amplitudes.The parametedy ; represents the amplitude correspond-

ing to the wave reflected from thth leaf at frequencyy. It is calculated based
on the formula:

A
Ay :S(azi,eli;fk;ri>Li(Bi;ai7fk)2—nl:.2' ®)

Below, we will explain the meaning of each factor in (8):

a. The factoiS(az, €l;, fy,ri) denotes the sonar beampattern, a function that de-
scribes the spatial distribution of the power density ofeéhgtted wave. The
argumentgaz, €l;) denote the azimuth and elevation angles of the line that
connects the origin (i.e., the sonar) anditideaf center, and the argument
denotes the distance between the sonar anihteaf center. Hergaz, el;)
andr; can be directly calculated from the leaf center coordingtesg, z ). For
a given sonary(+) is assumed to be known. In this study, we used a Gaussian
function to approximate the sonar beampattern. The pasmet the Gaus-
sian function are determined using empirical data. In paldr, the Gaussian
function parameters are determined by three variabledeéhenwidth of the
sonar beampattern-@ decibel), the direction that sonar faces, and the peak
amplitude of the sonar beampattern.

b. The factorL;(f3,a;, fx) denotes the beampattern of tth leaf, which de-
scribes the spatial distribution of the power density of téféected wave at
theith leaf. Here 3 is the incident angle of thi¢h leaf,a; is the radius of the
ith leaf, andfy is thekth frequency. The leaf beampattern can be calculated
using complicated physical equations [3]. In this study,approximate the
leaf beampattern using
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Li(Bi,ai, f) = Pu(c(fk, &) cosPa(c(fk, &) Bi).

wherec(fy,a) = 2ma; fk /v, v= 340 (meters per second) denotes the speed of
soundPy(c( fi,a;)) = 0.500%%+0.6867, and(c( fy, a;)) = 0.399% 09065
0.9979. The function®,(-) andP»(-) are nonlinear regression functions esti-
mated based on data obtained from numerical evaluation [2].

c. In the factorAc/(2rmr?), rj is the distance between the sonar andithdeaf
center, and\ is the wavelength of the emitted sound wave corresponding to
the frequencyf. Here, Ay is a known constant.

4. Calculate phase delaysThe phase delay parametefg;} reflect the phase
change at leafand frequencyfy due to wave propagation. After waves traxel
meters, the phase delay becomes; 2Ay. As it is a round trip for the sound to
travel from sonar to leaf and from leaf to sonar, the phasayddlie to propaga-
tion is 4rmr; /Ac. Another part that contributes to the phase delay is theg$laift
after the wave strikes the leaf. The phase shift dependseofreuencyfy, the
leaf radiusa;, and the incident anglB;. To make the computation efficient, we
estimate the phase shift by fitting a nonlinear regressisedan data obtained
from numerical evaluation [2], which gives

Phaseshift(f,, a, 8) = erf(PA(c(fy,ai))(1.57— ) — 2.6343

where erfx) = %T Xetdt, PA(C(fi. ai)) = 0.9824(fy, a;)°3523— 0.9459, and

c(fx,a) = 2ma; f/v. Based on these results, the phase delay can be calculated

by
@ _ Phaseshift( i, ai. ) )
k

Steps 1-4 provide the values OfAy;, ¢;i)}, based on which we can calculate
the frequency domain vectgr The final time domain signalis calculated by using
the inverse fast Fourier transform. Before applying thedfarm, we also applied
a Hann window function to weight, which helps minimize the signal side lobes
(unwanted ripples) in the resulting time domain signal.

i = —
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