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Web Appendix A

A constructed example on how the device difference can mislead the classification in

an unbalanced design

Systematic effects such as device artifacts can mislead the classification, especially in an unbal-

anced design. Here is a toy example. In the following table, we list the counts of objects measured

by two devices for a binary classification problem. If the device difference is used to predict the

classes, for example, by classifying all objects measured by device one to class one, the misclas-

sification rate will be (5 + 50)/365 = 15%, which seems quite good but is obviously biased since

the device difference is purely artificial. Unfortunately, most classification algorithms can hardly

recognize the sources of variation and may end up differentiating the objects based on the device

difference. We refer the variations caused by device or other experimental difference as “random

batch effects”.

True class Device one Device two
Class one 300 50
Class two 5 10
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Web Appendix B

Integrating bl, b0, α out sequentially from π(α,b1, . . . ,bL,b0, σ
2

b , τ |Zl,Yl, l = 1, . . . , L)

From equation (10) and the associated priors in equation (2) and (9) in the text, we have
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where Kl = CT
l Cl + (σ2

bΣτ)−1 and Ml = CT
l (Zl − Slα) + (σ2

bΣτ)−1b0, l = 1, . . . , L. From above,

we find the conditional distribution bl|α,b0, σ
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since the first 2L factors construct L normal density kernels. After integrating out bl’s, we can

expand MT
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l Ml and combine the terms with b0, which gives the following:
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We finally can integrate out α to obtain the marginal conditional posterior of σ2
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π(σ2

b , τ |Zl,Yl, l = 1, . . . , L)

∝ exp

{

1

2
M̃T K̃−1M̃ +

1

2
(
∑

l

K−1

l CT
l Zl)

T (σ2

bΣτ)−1K−1

0
(σ2

bΣτ)−1(
∑

l

K−1

l CT
l Zl)

}

· exp

{

1

2

∑

l

ZT
l ClK

−1

l CT
l Zl

}

|K̃|−1/2|K0|
−1/2(

∏

l

|Kl|
−1/2)|σ2

bΣτ |
−L/2|σ2

0
Στ |

−1/2π(σ2

b )π(τ ),

where K̃, M̃,K0 and Kl’s are defined in the above derivation.

Web Appendix C

More details on setting priors and other parameters in MCMC algorithms

In our proposed model, besides the truncation parameters pj and the weights {wj
k}

∞

k=1
discussed

in Section 3, there are several other priors that need to be set, including σ2

1
, σ2

0
, (d1, d2), ωj’s and

(ν1, ν0).

The σ2

1
and σ2

0
are scaling parameters in the covariance of α and β0

j (t)’s. We usually set them

between 10 and 100. Larger values also work but don’t have significant influence to the posterior

estimation of α and β0

j (t)’s. The parameter ωj reflects the prior belief on the probability that

the jth functional predictor is selected. If no further information is available on the preference of

selecting certain functional predictor, we can set ωj’s to be a constant across all j’s, and set this

constant be the proportion of functional predictors we expect to select. It is harder to make choices

on d1 and d2, which are inverse-gamma priors for the scaling parameter σ2

b . Our suggestion is to

set up a mean and variance for the inverse-gamma prior and solve for d1 and d2. For example, if

one set the inverse-gamma prior for σ2

β to have mean 1 and variance 80, the resulting solution is

d1 = 2.01, d2 = 0.9. On the choice of (ν1, ν0), since we have scaling parameters σ2

b and σ2

0
for γτj

,

we usually fix ν1 = 1 and set ν0 near zero(e.g, ν2

0
= 10−6).

Other parameters need to be determined in the two MCMC algorithms include δ, ζ, ξ and a.

Parameter δ affects the acceptance rate of σ2

b . An empirical value of δ between 0.5 and 2 yields
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acceptance rate approximated between 20% and 60%. The parameter ζ in Algorithm 2 determines

the probability of mutation, which we usually set to be 0.5. The other parameter ξ determines the

swapping probability in step 3 of Algorithm 1 and in the mutation step in Algorithm 2. Experiments

show that adjusting values of ξ will not improve the acceptance rate of τ significantly, so we usually

set it to be 0.5. In Algorithm 2, we also need to determine temperature ladder by a geometric ratio

a. The initial value of a is usualy set to be 3 − 5.
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Table 1: (Web Table) Real Data Application: The acceptance rates for the EMC algorithm based
on two different function approximation methods. M-H denotes the Metropolis-Hastings update.
The vector values correspond to the acceptance rates of all chains at the temperature ladder stated
in the text.

Acceptance rate Method using cosine basis expansion Method using FPC’s
M-H for σ2

b (60, 45, 32, 27, 17, 13, 11, 10, 10) × 10−2 (59, 44, 31, 26, 16, 13, 10, 9, 9) × 10−2

Mutation for τ (27, 18, 9, 4, 1, .8, .6, .6, .6) × 10−2 (27, 17, 7, 3, 0.9, .5, .9, .6, .6) × 10−2

Crossover for τ 0.11 0.14
Exchange for τ 0.08 0.11
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Figure 1: (Web figure) The box-plot of the first functional principle component scores of one spectral
curve (measured at excitation 340 nm) versus six device-probe-clinic combinations (left), two tissue
types (middle) and three menopausal states (right). Systematic differences across different levels
of these factors can be seen obviously. Note that here we only used observations from the normal
class, which excludes the possibility that the differences are caused by unbalanced proportions of
diseased cases in each level of the factors.
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Figure 2: (Web figure) Result of Simulation 1: The autocorrelation plot for posterior samples of σ2

b

and the corresponding histogram plot. On the bottom panel, the curve on top of the histogram is
the prior density of σ2

b .
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