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Summary: In functional data classification, functional observations are often contaminated by

various systematic effects, such as random batch effects caused by device artifacts, or fixed effects

caused by sample-related factors. These effects may lead to classification bias and thus should not be

neglected. Another issue of concern is the selection of functions when predictors consist of multiple

functions, some of which may be redundant. The above issues arise in a real data application where

we use fluorescence spectroscopy to detect cervical pre-cancer. In this paper, we propose a Bayesian

hierarchical model which takes into account random batch effects and selects effective functions

among multiple functional predictors. Fixed effects or predictors in non-functional form are also

included in the model. The dimension of the functional data is reduced through orthonormal basis

expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-

Hastings/Gibbs sampler, which suffers slow mixing. An Evolutionary Monte Carlo algorithm is

applied to improve the mixing. Simulation and real data application show that the proposed model

provides accurate selection of functional predictors as well as good classification.

Key words: Bayesian hierarchical model; Evolutionary Monte Carlo; Functional data classifica-

tion; Functional predictor selection; Fluorescence spectroscopy.
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1. Introduction

Classification with functional data is a challenging problem due to the high dimensionality

of the observational space and the high correlation between adjacent points of the functional

observations. One solution is to reduce the dimension and use the reduced features for

classification, as done in Hall, Poskitt and Presnell (2001), Zhao, Marron and Wells (2004),

and Ferré and Villa (2006). Another way is to use generalized linear regression, which was

proposed by James (2002) and Müller and Stadtmüller (2005) and was applied to practical

problems by Ratcliffe, Heller and Leader (2002) and Leng and Müller (2005).

In real data analysis, there are often practical issues that are not handled by the approaches

mentioned above. One is the presence of systematic effects that are significant enough to bias

classification, such as the artificial differences caused by measuring with different devices.

In the Web Appendix A, an example is constructed to show how the device difference can

mislead the classification in an unbalanced design. A similar issue is addressed in Baggerly

et al. (2004). Another practical concern arises with multiple functional predictors. In this

case, some functions are usually redundant or contain no information, therefore selecting a

subset of the functions can reduce the cost of data collection for future observations, and

may improve classification accuracy.

Our work is motivated by the investigation of fluorescence spectroscopy for cervical pre-

cancer diagnosis (Ramanujam et al., 1996). In our clinical study, several different fluorescence

spectra have been collected and used simultaneously for a single diagnosis. It is known that

some spectral curves contain more disease related information hence are more “important”

than others (Chang et al., 2002). Therefore it is beneficial to find those spectral curves that

are best for diagnosis and to remove the unnecessary ones.

The fluorescence spectroscopy data analyzed here are collected in the following way. An

excitation light at a fixed wavelength illuminates the cervical tissue. During illumination, the
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endogenous fluorescent molecules in tissue absorb the excitation light and emit fluorescent

light. The emitted light is then captured by an optical detector which produces the spectrum

as a smooth curve. In each measurement, the excitation light is varied at 16 different

excitation wavelengths, ranging from 330 nm to 480 nm with increments of 10 nm. This

produces 16 spectral curves for each measurement. In each curve, the spectral intensities

are recorded at emission wavelengths ranging between 385 nm and 700 nm. During data

preprocessing, the curves are truncated so that some intensity points at the smallest and

largest emission wavelengths are removed.

[Figure 1 about here.]

Figure 1 illustrates one observation. The left panel shows the first 8 of the total 16 spectral

curves from this observation. The right panel shows a heat plot of the intensities, by stacking

up all the 16 spectra in the order of their excitation wavelength. We call such a set of

fluorescence spectroscopy curves an excitation-emission matrix (EEM).

One purpose of this study is to select a few excitation curves out of a total of 16 for

diagnosis. The selected curves can then be measured in the future to reduce the device cost

and measurement time. Several factors that are brought in by the experimental design need

to be considered in this study. First, the data are obtained using two instruments with four

optical probes located at three clinics. A preliminary study shows that there exist significant

differences among the data from different device-probe-clinic combinations, which will put

the classification at risk since the diseased cases are rare and distributed inhomogeneously

across these combinations, like the example shown in the Web Appendix A. Second, in

addition to device-clinic differences, it is believed that other factors, such as tissue type

of the sample and menopausal status of the patient, will be confounded with the disease

information. These factor effects are shown through box-plots in Web Figure 1.

This paper proposes a Bayesian hierarchical model with selection of functional predictors
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for complex functional data classification problems, where multiple functional predictors

are influenced by random batch effects and fixed effects. We extend the idea of Bayesian

variable selection to generalized functional linear regression with binary responses. Details on

Bayesian variable selection can be found in George and McCulloch (1993, 1997) and Brown,

Vannucci and Fearn (1998, 2002). We use a Bayesian hierarchical model to take into account

random batch effects. Fixed effects or predictors in non-functional form are also included

in the model. The dimension of the functional data are reduced through orthonormal basis

expansion or functional principal component analysis. A Hybrid Gibbs/Metropolis-Hasting

sampler is used for posterior sampling, which we find mix slowly. An Evolutionary Monte

Carlo (EMC) algorithm (Liang and Wong, 2000) is then applied for better mixing. Similarly

to most variable selection methods, our proposed model can serve for both predictor selection

and prediction(with model averaging). In our current application, we are mainly interested in

selecting functional predictors to be measured in the future at a reduced cost. However, the

model may also be applied to classification problems with redundant functional predictors

simply to improve prediction.

The rest of the paper is organized as follows. We introduce the Bayesian hierarchical

model with functional predictor selection in Section 2, discuss the selection of parameters in

Section 3, and describe the proposed MCMC algorithms in Section 4. Simulation results are

shown in Section 5. The application of the proposed model to the fluorescence spectroscopy

data is given in Section 6, followed by discussion in Section 7. More discussion on setting

priors and parameters in MCMC algorithms can be found in Web Appendix C.
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2. The Bayesian hierarchical model with selection of functional predictors

2.1 The proposed model

Suppose that we obtain functional observations from L exchangeable batches, in which the lth

batch contains nl observations and each observation contains J functions. For l = 1, . . . , L,

i = 1, . . . , nl and j = 1, . . . , J , let xl
ij(t) be the jth function observed from the ith observation

in batch l, which takes values in L2[Tj], with Tj the compact domain of xl
ij(t). In addition to

the functional observations, there are also non-functional observations sl
i, which is assumed

to be a vector of length q. We treat the observations {sl
i, x

l
ij(t), j = 1, . . . , J} as predictors

and assume the binary responses yl
i to be conditionally independent given the predictors.

We introduce univariate latent variables zl
i which link the responses yl

i to the predictors as

follows:

yl
i =





1 if zl
i < 0,

0 if zl
i > 0.

zl
i = (sl

i)
T α +

J∑

j=1

∫

Tj

xl
ij(t)β

l
j(t)dt + ǫl

i. (1)

Here we take the first component of sl
i to be 1 to include the intercept term. For all i and l,

we assume ǫl
i to be i.i.d. with distribution N(0, 1), and assume that βl

j(t) ∈ L2[Tj] for all j.

See Albert and Chib (1993) for the use of latent variables to analyze binary response data.

In many cases, some functional predictors do not contribute to the the classification, and

selecting a subset of them may actually improve the classification accuracy. In our application

introduced in Section 1, there are also economic reasons for using a subset of the J functional

predictors. To this end, we introduce a hyper-parameter τ to the priors of βl
j(t), where

τ = (τ1, . . . , τJ)T and each component takes values either 1 or 0, indicating whether or not

the corresponding functional predictor is selected. The proposed priors for α and βl
j(t) are
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as follows:

α ∼ N(0, σ2
1Iq),

βl
j(t) | β0

j (t), τj, σ
2
b ∼ GP (β0

j , σ
2
bγτj

),

β0
j (t) | τj ∼ GP (0, σ2

0γτj
),

τj | ωj ∼ Bernoulli(ωj),

σ2
b | d1, d2 ∼ Inv-gamma(d1, d2),

(2)

where σ2
1, σ2

0, d1, d2, ωj are pre-specified prior parameters. GP (µ, γ) denotes a Gaussian

process with mean µ(t) and covariance function γ(s, t). We let γτj
depend on τj by

γτj
(s, t) =

[
ν2

1τj + ν2
0(1 − τj)

] ∞∑

k=1

wj
kφ

j
k(s)φ

j
k(t), (3)

where {φj
k}∞k=1 is a complete orthonormal basis of L2[Tj]. Note that the infinite sum in

equation (3) is a perfectly general form for a covariance function; it is simply the spectral

representation of a covariance function (Ash and Gardner, 1975). We will treat {φj
k}∞k=1

and {wj
k}∞k=1 as prior parameters and make specific choices of them. In equation (3), we let

ν1 >> ν0 > 0 and set ν0 to be close to 0. Under this setting, both βl
j(t) and β0

j (t) will

have covariances function close to 0 when τj = 0 (i.e., the jth functional predictor is not

selected), and have relatively large variances when τj = 1(i.e., the jth functional predictor is

selected). This type of prior is motivated by George and McCulloch (1993, 1997) where they

used mixture-normal priors for variable selection. The wj
k’s in equation (3) are pre-specified

positive weight parameters subject to
∑∞

k=1 wj
k < ∞ for all j. For simplicity, we assume that

the Gaussian process priors for βl
j(t) are independent for all j and l, and that priors for τj

are independent for all j. In order to do practical posterior inference, it will be necessary

to construct finite dimensional approximations to the functional predictors and coefficients.

This will be described in detail in Section 2.2 below.



6 Biometrics, March 2009

2.2 The posterior inference

From equation (1) and the standard normal assumption of ǫl
i, it is easy to see that the

conditional distribution of zl
i given yl

i, α and βl
j(t) is a truncated normal

zl
i | yl

i,α, βl
j(t) ∼ TN(µz, 1){I{zl

i<0}I{yl
i=1} + I{zl

i>0}I{yl
i=0}}, (4)

where µz = (sl
i)

T α +
∑J

j=1

∫
Tj

xl
ij(t)β

l
j(t)dt and I{·} is the indicator function. Since {φj

k}∞k=1

is a complete orthonormal basis of L2[Tj], we can expand xl
ij(t) and βl

j(t) by

xl
ij(t) =

∞∑

k=1

cl
ijkφ

j
k(t), βl

j(t) =
∞∑

k=1

bl
jkφ

j
k(t), (5)

and use the truncated versions of (5) to approximate xl
ij(t) and βl

j(t). Note that the or-

thonormal basis can be chosen to be a known basis such as Fourier or wavelet basis.

If assuming that xl
ij(t) has zero mean and

∫
Tj

E[xl
ij(t)

2]dt < ∞, Mercer’s theorem and

Karhunen-Loève theorem (Ash and Gardner, 1975) suggest taking the eigenfunctions of the

covariance operator Kj as the orthonormal basis, where Kj is defined by

Kjx
l
ij(t) =

∫
xl

ij(s)kj(s, t)ds, kj(s, t) = Cov(xl
ij(s), x

l
ij(t)).

In this case, the coefficients {cl
ijk}∞k=1 are called functional principal component (FPC) scores

of xl
ij(t). Note that using the FPC method is different from using fixed basis expansions in

that the eigenfunctions need to be estimated. Various estimating methods have been proposed

in Ramsay and Silverman (1997) and Hall, Müller and Wang (2006).

Once the orthonormal basis coefficients or the FPC scores have been estimated, we can

reduce (1) by applying the truncated approximations in (5), which gives

zl
i = (sl

i)
T α +

J∑

j=1

pj∑

k=1

cl
ijkb

l
jk + ǫl

i, (6)

where pj is the truncation parameter for the jth functional predictor. The notation of the

above equation can be simplified by concatenating coefficients of the J functions to make

one vector bl. The simplified form of equation (6) is

Zl = Slα + Clbl + ǫl, (7)
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where Zl = (zl
1, . . . , z

l
nl

)T and ǫl = (ǫl
1, . . . , ǫ

l
nl

)T . Sl is a matrix of size nl × q with the ith

row equals (sl
i)

T , and Cl is a matrix of size nl × p (p =
∑J

j=1 pj) with the ith row equals

(cl
i11, . . . , c

l
i1p1

, . . . , cl
iJ1, . . . , c

l
iJpJ

)T . Similarly, bl = (bl
11, . . . , b

l
1p1

, . . . , bJ1 . . . , bl
JpJ

)T . Based on

(7), the conditional distribution of the latent variables in (4) becomes

Zl|α,bl,Yl ∼ TN(µl, Inl
)

nl∏

i=1

(I{zl
i<0}I{yl

i=1} + I{zl
i>0}I{yl

i=0}), (8)

where µl = Slα +Clbl and Yl = (yl
1, . . . , y

l
nl

)T . The truncated orthonormal basis expansion

or FPC analysis also reduce the Gaussian process priors for βl
j(t) and β0

j (t) to multivariate

normal priors

bl|b0, σ
2
b , τ ∼ N(b0, σ

2
bΣτ ),

b0|τ ∼ N(0, σ2
0Στ ),

(9)

where Στ = DτW
1/2RW1/2Dτ . Here R is the prior correlation matrix of bl and b0.

In our setup, R = Ip, an identity matrix since in Section 2.1 we assumed that βl
j(t)’s

are independent for all j’s. W is also a diagonal matrix of size p, with positive diagonal

components (w1
1, . . . , w

1
p1

, . . . , wJ
1 , . . . , wJ

pJ
). In other words, the diagonal of W concatenates

the first pj components of the weight sequence {wj
k}∞k=1, for j = 1, . . . , J . Dτ is another

diagonal matrix with diagonal components

(u1
1, . . . , u

1
p1

, . . . , uJ
1 , . . . , uJ

pJ
),

where uj
k = ν1τj + ν0(1 − τj), for k = 1, . . . , pj, j = 1, . . . , J . Note that uj

k does not depend

on k.

With the conditional distribution (8), the priors for α, τ and σ2
b in (2), and the reduced

multivariate priors for bl and b0 in (9), we get the joint conditional posterior distribution of

α, bl’s, b0, σ2
b , τ given Zl’s and Yl’s by

π(α,b1, . . . ,bL,b0, σ
2
b , τ |Zl,Yl, l = 1, . . . , L)

∝ π(α)π(σ2
b )π(b0|τ )π(τ )

∏

l

π(Zl|α,bl,Yl)π(bl|b0, σ
2
b , τ ).

(10)

The parameters α, bl’s and b0 can all be integrated out sequentially from (10), which gives
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the marginal conditional posterior distribution

π(σ2
b , τ |Zl,Yl, l = 1, . . . , L). (11)

See the Web Appendix B for details of the integration. Based on (8), (10) and (11), MCMC

algorithms can be designed to obtain posterior samples of the parameters. Using the posterior

samples of bl’s, we can estimate βl
j(t)’s. For new observations, we can use the estimated

βl
j(t)’s and posterior estimate of α for prediction.

3. Setting parameters

It is important to determine the truncation parameters pj used in basis expansion (see equa-

tion (6)). One could set up priors for each pj and adopt reversible jump MCMC (Green, 1995)

for posterior sampling. This strategy is reasonable but will introduce extra complications for

MCMC. Another strategy of determining the pj’s is through cross-validation. A test set can

be used and the pj’s can be determined through maximizing the prediction performance on

test set. This method is straightforward but prohibitive unless one assumes pj ≡ p. It is also

computationally expensive since it requires the model to be trained on all possible choices

of p. For this paper, we propose a simple practical method for determining pj’s. Since the

truncated basis expansion is used to approximate the original functional predictors, we set

an approximation criterion to determine pj. For example, if using FPC analysis, we set the

criterion to be f̂(pj) =
∑pj

k=1 λ̂k/
∑K

k=1 λ̂k > c1, for 0 < c1 6 1, 1 6 pj 6 K. Here λ̂k’s are

the estimated eigenvalues, and K is the maximum number of eigenvalues that are non-zero.

Here f̂(pj) represents the proportion of variability accounted using the first pj FPC’s. We

usually set c1 above 0.99 in this paper. If using a known orthonormal basis, we suggest to

let f̂(pj) = 1−∑
i ||xij(t)− x̂ij(t)||2/||xij(t)||2 > c2, where x̂ij(t) is the estimated function of

xij(t) after truncating at pj, and || · || is the L2 norm. We also suggest setting c2 above 0.99.

The weight sequences {wj
k}∞k=1 in equation (3) will determine the weight matrix W in (9).
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We discuss the choices of {wj
k}∞k=1 here. We know that wj

k > 0 and
∑∞

k=1 wj
k < ∞. The main

effect of wj
k is to weight higher orders of the orthonormal basis {φj

k(t)} toward zero so that

the series in (3) converges. In this paper, we always set 1 = wj
1 > wj

2 > · · · > 0 so that all

the weights are between 0 and 1. We determine {wj
k}∞k=1 by another parameter m such that

wj
k = m(k−1) for all k = 1, . . . ,∞ and all j. Smaller value of m will make {wj

k}∞k=1 decay to

zero faster. The values of {wj
k}∞k=1 are truncated at pj to form the weight matrix W. We

usually take m between 0.5 and 0.9. The setting of other MCMC parameters and priors is

discussed in Web Appendix C.

4. Markov Chain Monte Carlo

Based on the model constructed in Section 2, we propose two MCMC algorithms for posterior

sampling. The first one is a hybrid Metropolis-Hastings/Gibbs sampler, and the second one

is a modified version of Algorithm 1 which uses the EMC algorithm to improve the mixing

when the number of functional predictors is relatively large.

4.1 MCMC Algorithm 1 (Hybrid Metropolis-Hastings/Gibbs Sampler)

Step 0. Set initial values for bl’s, α, τ and σ2
b .

Step 1. For l = 1, . . . , L, conditional on Yl and current values of bl and α, update Zl from

the truncated normal distribution described in equation (8) of Section 2.2.

Step 2. Update σ2
b based on π(σ2

b |τ ,Zl,Yl, l = 1, . . . , L). Sample a proposal σ̃2
b by log σ̃2

b =

log σ2
b + ǫ, with ǫ ∼ N(0, δ2). δ is an adjustable step size. Compute the ratio

Rσ =
π(σ̃2

b |τ ,Zl,Yl, l = 1, . . . , L)σ̃2
b

π(σ2
b |τ ,Zl,Yl, l = 1, . . . , L)σ2

b

and update σ2
b = σ̃2

b with probability min(1, Rσ).

Step 3. Update τ based on π(τ |σ2
b ,Zl,Yl, l = 1, . . . , L). First generate a proposal τ̃ using

“switch/swap”, i.e., provided that τ does not contain all 1’s or all 0’s, with probability

ξ, randomly swap one 1 term with one 0 term; and with probability 1−ξ, randomly pick
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one position and switch it. Then let

Rτ =
π(τ̃ |σ2

b ,Zl, l = 1, . . . , L)

π(τ |σ2
b ,Zl, l = 1, . . . , L)

and update τ = τ̃ with probability min(1, Rτ ).

Step 4. Update α conditional on current values of σ2
b , τ and Zl through the conditional

distribution α|σ2
b , τ ,Zl ∼ N(µα,Vα), where µα and Vα are defined as in Web Appendix

B.

Step 5. Conditional on current values of α, σ2
b , τ and Zl, update b0 by b0|α, σ2

b , τ ,Zl ∼

N(µ0,V0), where µ0 and V0 are defined as in Web Appendix B.

Step 6. Conditional on current values of b0, α, σ2
b , τ and Zl, update bl by bl|b0,α, σ2

b , τ ,Zl ∼

N(µl,Vl) for all l, where µl and Vl are defined as in Web Appendix B.

Repeat step 1 − 6 until the maximum number of iterations is reached.

The “switch/swap” proposal used in step 6 is similar to the methods used in Brown et

al. (1998, 2002). Our simulation shows that if the number of functional predictors is small,

this type of proposal can locate the correct value of τ within a few iterations. However,

when the number of functional predictors become large, the number of possible values of

τ increases at an exponential rate. The “switch/swap”proposal can hardly find successful

proposals because of the discrete nature of the large state space, which results in extremely

low acceptance rate (e.g., acceptance rate less than 0.1%).

In order to obtain better mixing for τ , we construct a more effective EMC algorithm

based on Algorithm 1. The EMC algorithm is a MCMC scheme that inherits the attractive

features of both simulated annealing and genetic algorithms. It simulates a population of I

Markov chains in parallel, each chain with a different “temperature”. The temperatures are

ordered decreasingly to form a “ladder”. If π(θ) denotes the target posterior distribution and

ti denotes the temperature for the ith chain, then the transformed posterior for the ith chain

is πi(θ) ∝ π(θ)1/ti . Such transformations have the effect of making the unnormalized target
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posterior density more flat or more spiky. The EMC algorithm improves on Metropolis-

Hastings updates by introducing three operations: mutation, crossover and exchange. These

operations allow both independent updates for each chain and interactions between neigh-

boring chains. More details on EMC algorithm can be found in Liang and Wong (2000), Liu

(2001), Goswami and Liu (2007) and Bottolo and Richardson (2008).

In the EMC algorithm, the choice of temperatures for the temperature ladder is important.

We adopt a simple method suggested in Bottolo and Richardson (2008), which uses a

geometric sequence and adjusts the common ratio in a burn-in period so that the acceptance

rate for the exchange operation is between 10% and 60%. The number of chains I and the

maximum temperature are pre-specified. Based on our experiences, we suggest choosing I to

be around J/2, and the maximum temperature between 10 and 103. The Algorithm 2 stated

below gives details of the EMC algorithm.

4.2 MCMC Algorithm 2 (EMC)

Step 0. Set initial values for bl’s, α, τ and σ2
b . And set up an initial temperature ladder:

t1 > t2 > . . . > tI > 0, where ti+1/ti = a (i = 1, . . . , I) denotes the initial ratio of

the geometric sequence. We re-adjust the temperature ladder so that t1 is bounded by

the maximum temperature and one chain has temperature exactly 1. We also set the

step-size for adjusting temperature to be δa = log2(a)/(3ñ), where ñ is the ratio of the

burn-in period and a block size(usually 100). We also set the parameter ζ, the probability

of mutation and crossover, and ξ, the probability of switch and swap within the mutation

step.

Step 1. Run step 1 − 2 in Algorithm 1 independently for each chain, obtaining samples of

Zl’s and σ2
b .

Step 2. Conditional on current values of Zl’s and σ2
b in each chain, update τ according to

step 2.1 and 2.2. For convenience, here we denote π(τ |·) = π(τ |σ2
b ,Zl,Yl, l = 1, . . . , L),
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and denote πi(τ |·) the similar expression when plugging in the samples of σ2
b and Zl’s

from the ith chain.

Step 2.1. (mutation/crossover) With probability ζ, perform a mutation step indepen-

dently for each chain, i.e., “switch” or “swap” with probability ξ, as in step 3 of

Algorithm 1. In particular, denote the mutated value for the ith chain to be τ̃ and

compute the log ratio log ri
m = [log πi(τ̃ |·) − log πi(τ |·)] /ti. Update τ = τ̃ with

probability min(1, ri
m).

With probability 1−ζ, perform the crossover step [I/2] times, where [I/2] denotes

the integer part of I/2. The crossover is conducted as follows: randomly select a pair

of chains (i, j) and exchange the right segment of τ ’s from a random point. Denote

the old values to be (τ i, τ j), and the crossed values to be (τ̃ i, τ̃ j), we then compute

the log ratio: log rc = [log πi(τ̃
i|·) − log πi(τ

i|·)]/ti + [log πj(τ̃
j|·) − log πj(τ

j|·)]/tj.

The (τ̃ i, τ̃ j) are accepted with probability min(1, rc).

Step 2.2. (exchange) Exchange the τ samples from two adjacent chains I times, i.e.,

randomly choose τ i and τ j from neighboring chains, and compute the log ratio:

log re = [log πi(τ
j|·) − log πi(τ

i|·)] /ti + [log πj(τ
i|·) − log πj(τ

j|·)] /tj, and exchange

τ i with τ j with probability min(1, re).

Step 3. Conditional on current values of Zl’s, σ2
b , and the current samples of τ , run step

4− 6 in Algorithm 1 independently for each chain, obtaining samples of α, b0 and bl’s.

Step 4. For every block of iterations within the burn-in period, we adjust the temperature

ladder according to the acceptance rate of exchange operations within this block. A new

geometric ratio ã is computed by log2 ã = log2 a ± δa, where the “+” sign is used when

we would like to reduce the acceptance rate of exchange. The new temperature ladder

is applied to the next block of iterations.

Repeat step 1 − 4 until the maximum number of iterations is reached.
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5. Simulation results

Two simulation studies were conducted to evaluate the performance of the proposed model

for functional data classification. In both simulations, we generate data that contain both

random and fixed effects. Simulation 1 uses 4 functional predictors, and thus τ is a binary

vector of length 4. Since the number of functional predictors is small, the MCMC Algorithm

1 works well. Simulation 2 increases the number of functional predictors to 20, in which case

the Algorithm 1 suffers slow mixing. Algorithm 2 is used, which improves the mixing for

posterior samples of τ .

5.1 Simulation 1

We generate n = 1000 i.i.d. observations, using 2 non-functional predictors and 4 functional

predictors. For the non-functional predictors, one of them is generated from a uniform

distribution on [0, 1], the other is a binary variable. The 4 functional predictors are generated

using the first 10 orthonormal cosine bases on the interval [0, 1], i.e., using bases φ0(t) =

1, φk(t) =
√

2 cos(kπt), k = 1, . . . , 9 (see Eubank (1999) for details of cosine series). The

random effect has two levels, i.e., L = 2. We set the true value of τ to be (0, 1, 0, 1), indicating

that the first and the third function do not contribute to the model, i.e., βl
1(t) = βl

3(t) ≡ 0,∀ l.

Other parameters that are used to generate the data are σ2
0 = 10, σ2

1 = 10, σ2
b = 5. The

weights {wj
k}∞k=1 used for the prior covariance are determined by parameter m = 0.51.

The binary responses are generated based on (1) using numerical integration. To evaluate

classification results, the data are randomly split into a training set(with 800 observations)

and a test set(with 200 observations).

The proposed model in Section 2 is applied to the training data. We use FPC to construct

the orthonormal basis and set the approximation criterion described in Section 3 to be

c1 = 0.99, which results in pj = 4 for all j. Note that the computation of FPC scores for

the test set is based on the eigenfunctions estimated from the training set in order to avoid
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possible bias. Based on the FPC scores, the model is trained using the MCMC Algorithm 1

with the following priors: σ2
0 = σ2

1 = 20, d1 = 4.3, d2 = 16, ωj ≡ 0.5, ν2
1 = 1, ν2

0 = 10−6. The

prior parameters for the weight matrix W is set to be such that m = 0.98. We set ζ = ξ = 0.5

and δ = 1.4. We performed 30, 000 iterations with a burn in period of 15, 000. It turns out

that the posterior samples of τ converge to the true τ within 10 iterations. The estimated

marginal posterior probability (Pr{τj = 1}, j = 1, . . . , 4) = (0, 1, 0, 1), indicating that our

algorithm has correctly selected the second and the fourth functional predictor with high

accuracy. Web Figure 2 shows the autocorrelation plot of the posterior samples of σ2
b and

the corresponding histogram plot. The Geweke convergence diagnostic test (Geweke, 1992)

for σ2
b using the first 10% and last 50% of the samples gives Z-score −0.57, indicating the

convergence of the posterior sample means. The posterior median for σ2
b is 5.7, and the 95%

credible interval for σ2
b is (3.0, 12.4). Note that since we are using a different orthonormal

basis (FPC) than that used to generate data, the posterior estimates of bl’s and b0 will not be

comparable with the true values. However, we can estimate coefficient function β̂l
j(t)’s from

bl and compare them with the true coefficient functions. Figure 2 shows the posterior means

of the coefficient functions and the corresponding simultaneous 95% credibility bands for

the non-zero cofficient functions, along with the true functions. The simultaneous credibility

band is obtained by finding a constant M , such that 95% of the simulated posterior functions

fall in the interval β̂l
j(t)±Mσ̂l

j(t),∀t, where β̂l
j(t) and σ̂l

j(t) denotes the posterior mean and

standard deviation of the cofficient functions. From Figure 2, we see that the true coefficient

functions lie in the 95% credibility bands.

[Figure 2 about here.]

After the training step, the estimated coefficient functions are applied to the test set to

get the posterior predictive probability. Treating yi = 1 as diseased and yi = 0 as normal,

the predictions on the test set gives sensitivity 92% and specificity 99%, with the total
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misclassification rate 4.5%. Note that the sensitivity and specificity we reported here are

obtained by finding a point on the empirical ROC curve that maximizes the sum of sensitivity

and specificity (see Zweig (1993) for introduction of ROC Curves).

As mentioned in Section 4, in Algorithm 1, we use a Metropolis-Hastings step with a

“switch/swap” proposal to update the parameter τ . In this simulation, the space for τ only

has 24 possible values. The trace of posterior samples of τ shows that when Algorithm 1

starts from a random value, it only updates 3 times before reaching the correct value, which

never changes afterward. However, as the length of τ increases, the size of the state space of τ

increases exponentially, and the “switch/swap” proposal takes a long time to find a ”good”

proposal. Our experiments show that when the length of τ goes beyond 8, Algorithm 1

suffers extremely low acceptance rate for τ and mixes very slowly. Therefore we suggest

using Algorithm 2 when the number of functional predictors is large (e.g., greater than 8).

5.2 Simulation 2

To evaluate the performance of Algorithm 2 when there are a relatively large number of

functional predictors, we generate n = 1000 i.i.d. observations similarly as in Simulation 1

using the first 10 cosine bases functions, but increase the number of functional predictors

per observation to 20. We set the true τ to be such that 8 out of the 20 components are

1’s. Other parameters are set to be the same as in Simulation 1. We also split the data to

training and test set as in Simulation 1.

Similarly to Simulation 1, we set approximation criterion c1 = 0.99 as we approximate

the functional predictors using FPC, which results in pj = 4 for all j. Seven parallel

chains are used in Algorithm 2 with a maximum temperature of 18 for the temperature

ladder and the geometric ratio for the ladder starting at 3. Other prior parameters are

set similarly as in Simulation 1. We perform 20, 000 MCMC iterations with a burn-in

period of 5, 000 in which the temperature ladder is adjusted. In addition to this burn-
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in period, an extra 5, 000 iterations are used as a second-stage burn-in period(with the

fixed temperature ladder obtained from the first period). Therefore the posterior inference

is based on the last 10, 000 iterations. It takes around 3 hours to complete the job using

a computer server with dual 3.4 GHz Intel Xeon processors and 4 GB of memory. The

MCMC algorithm is coded using R. The final temperature ladder after the burn-in period

adjustment is (18, 7.53, 3.15, 1, 0.55, 0.23, 0.1). The acceptance rates of σ2
b for different chains

are (56, 41, 33, 23, 17, 12, 9) × 10−2, and the acceptance rates of τ in the mutation operation

step are (23, 13, 4, 0, 0.5, 1, 0) × 10−4, in the same order of the temperature ladder. The

acceptance rates for crossover and exchange operations are 15.3% and 45.8%, respectively.

We plot the estimated marginal posterior probability Pr{τj = 1}, j = 1, . . . , 20, under three

selected temperatures in Figure 3, compared with the true value of τ . Figure 3 shows that

at temperature 3.15, more components in τ than the true are selected. The chains with

temperature 1 and 0.1 show similar marginal posterior probabilities. They both pick out

the correct functional predictors. The estimated regression coefficient functions are obtained

from the chain with temperature 1 and applied to the test set for prediction, with a resulting

sensitivity of 94.3%, specificity of 95.8% and misclassification rate of 5%.

[Figure 3 about here.]

6. Application to fluorescence spectroscopy data

The proposed model is applied to the fluorescence spectroscopy data introduced in Section 1.

In this data set, an EEM measurement corresponds to an observation with 16 functional

predictors. Using our approach, we aim to select a subset of the 16 curves in the EEM to

reduce the cost of data collection.

There are a total of 2414 measurements taken from 1006 patients. Each patient has 1 or

more (up to 6) sites that were measured and there exists repeated measurements (although
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not for every patient). The data were pre-processed by procedures such as background

correction and smoothing. All measurements come from 6 device-clinic combinations, which

we treat as the sources of random effects. Two fixed effects are considered and treated as

non-functional predictors in the proposed model: tissue-type, coded as 1, 2, and menopausal

status, coded as 1, 2, 3. The 2414 measurements are randomly split into training and test set,

with 1353 observations in the training set and 1061 in the test set. The split is conducted

at the patient level, i.e., measurements from each patient either all fall in training set or

all fall in test set. The proportion of diseased observations in the training and test sets are

10% and 9%, respectively. Both cosine basis expansion and FPC are used to approximate

the functional predictors. We determine the number of basis functions used for each curve

by setting the approximation criterion c1 = 0.998 for FPC, and c2 = 0.992 for cosine basis

expansion. The resulting pj’s for the functional predictors range from 2 to 4. The priors

are set as: σ2
0 = σ2

1 = 20, d1 = 3.6, d2 = 22.9, ωj ≡ 0.5, ν1 = 1, ν0 = 10−3. The weight

matrix W is determined by setting the parameter m = 0.81, using the way described in

Section 3. In both cases, we perform 20, 000 MCMC iterations with 5, 000 burn-in iterations

for temperature ladder adjustment. Similary as in Simulation 2, an extra 5, 000 iterations are

used as a second-stage burn-in period. Nine parallel chains are used in Algorithm 2 for both

sets of basis functions. The maximum temperature used in Algorithm 2 is 10 in both the FPC

case and the cosine expansion case. Both cases use an initial geometric ratio a = 3. Other

parameters used in Algorithm 2 are: δ = 1.2, ζ = ξ = 0.5. The acceptance rates in both

cases are listed in Web Table 1. The posterior mean estimate for σ2
b is 3.10 using FPC, and

is 3.52 using cosine basis expansion. In Figure 4, we plot the estimated marginal posterior

probabilities Pr{τj = 1}, j = 1, . . . , 16, for both cases. Figure 4 shows that the two basis

expansion methods provide similar marginal posterior probabilities for τ . Both methods

show high probabilities of selection for functions at excitation 360 and 400nm, followed by
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functions at excitation 480nm and others. The marginal posterior probabilities suggest an

order of selection for the functional predictors, with higher quantities having higher priority

of being selected. The decision of selection can be made by setting the total number of

functions to select, and choose the functions by the marginal posterior probabilities. For

example, if we would like to select 3 functional predictors, both methods of basis expansion

suggest to select functions at excitation 360, 400 and 480nm. One can also make decisions

based on the joint posterior probabilities of τ (e.g., selecting the most frequently visited

model.)

[Figure 4 about here.]

The estimated regression coefficients are applied to the test set for prediction. The predic-

tion results are listed in Table 1 and are compared with 5 other classifiers. Here we denote our

proposed model “BHFPS”, an abbreviation of Bayesian Hierarchical Functional Predictor

Selection. Note that all the classifiers in Table 1 use both the non-functional and all 16

functional predictors. In particular, the BVS model is a regular Bayesian variable selection

method which does not consider the random effects and functional predictor selection. It se-

lects variables among the pooled scores obtained from orthonormal basis expansion of the 16

curves (Zhu, Vannucci and Cox , 2007). The Bayesian hierarchical variable selection (BHVS)

is an extension of the BVS model which includes the random effects with a hierarchical

setup. From Table 1, we see that the proposed method (BHFPS) obtains slightly higher

area under the ROC curve(AUC) than BHVS and BVS. Table 1 also shows that the two

orthonormal basis expansion methods are comparable in their prediction ability, although

the cosine basis expansion method shows slightly lower AUC’s than the FPC method. In

Figure 5, we compare the empirical ROC curves for models listed in Table 1 using the

results of the FPC method.

[Table 1 about here.]
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[Figure 5 about here.]

Based on the functional predictors selected from the proposed model, classification algo-

rithms can be trained independently using only the selected curves. For example, trained

on the first 3 functional predictors selected by the proposed model, the BHVS model gives

sensitivity 73.7% and specificity 70%, with corresponding AUC 0.80 and misclassification

rate 29%. Compared with Table 1, these prediction results are comparable with those using

all 16 curves(which are based on model averaging over the different posterior selections of τ ).

Hence it is possible to use a smaller number of curves and retain a high prediction power.

Using the selected curves, a new device can be constructed which reduces cost and saves

measurement time.

7. Discussion

Motivated by a practical problem in functional data classification, we have proposed a

Bayesian hierarchical model to deal with situations when functional predictors are contam-

inated by random batch effects. Inferences based on this model help to select a subset of

functional predictors for classification. This model is applied to a real application of using

fluorescence spectroscopy for cervical pre-cancer diagnosis. The results suggest that it is

possible to build more cost-effective device with fewer spectral curves.

When setting the priors for the coefficient functions in (2), we have assumed that βl
j(t)

are independent for all j and l, which leads to the prior correlation matrix R = Ip in

(9) after approximation with basis expansion. This is just a simple and convenient choice

of prior. It is possible to allow the priors for βl
j(t) to be correlated, such as assuming

that (βl
1(t), . . . , β

l
J(t)) is a multivariate Gaussian process, as done in Morris and Carroll

(2006). However, determining prior correlations can be difficult and the resulting posterior

computation can be complex.
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Another concern arises over the necessity of using a hierarchical structure to adjust for

batch effects. As we have pointed out in Section 1 and the Web Appendix A, for data

obtained from an unbalanced experimental design, classification can be easily biased by batch

effects. Algorithms that do not adjust for batch effects may result in classification based on

batch difference, rather than disease information. Using a hierarchical model is a natural

way to model the batch structure. In our real data application, although the hierarchical

models (BHFPS and BHVS) did not improve prediction significantly over models like BVS

(see Table 1 and Figure 5), they are more suitable as they adjust for the batch effects. In

fact, we should not always expect that adjusting for batch effect can improve the prediction,

since with a bad experimental design, a classification algorithm can get prediction as good

as 100% sensitivity and specificity, by simply using batch information (see, e.g., discussions

of Baggerly et al. (2004)).

In our simulation and real data applications, the proposed model was trained using data

from all batches, and predictions were made on observations from the same batches. Like

many other hierarchical models, our proposed model can also predict observations from new

batches. However, it is natural to expect that the prediction will be worse when predicting

on new batches, since the random effect of the new batch is unknown when training the

model.

Finally, like many other regression problems, when there exists collinearity between the

functional predictors, a unique solution for the “best” subset may not be guaranteed. In this

case, our proposed model may provide nearly equal posterior probabilities of selecting one

or the other functional predictors.

8. Supplementary Materials

The Web Appendices referenced in Section 1, 2.2, 3, 4 and 7 are available under the Paper

Information link at the Biometrics website http://www.biometrics.tibs.org.
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Figure 1. Left panel: spectral curves at 8 different excitation wavelengths ranging from
330nm to 400nm. Right panel: heat plot of an excitation-emission matrix (EEM).
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Figure 2. The posterior estimation of the non-zero coefficient functions βl
j(t) and their

95% simultaneous credibility band, compared with the true coefficient functions used to
generate the data. Here j is the the index for mutiple functional predictors, and l is the
index for batch. β0

j (t)’s are the grand means of all batch coefficients. The solid lines denote
the posterior mean; the dotted lines denote the 95% credibility bands; the dashed lines denote
the true coefficient functions. We only listed the estimations for j = 2, 4 since the functional
predictors at j = 1 and 3 are unselected and thus the associated coefficient estimations are
close to zero.
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Figure 3. The marginal posterior probabilities Pr{τj = 1}, j = 1, . . . , J , at 3 selected
temperatures. The symbol ⋆ indicates the true value of each component of τ . The vertical
lines are the marginal posterior probabilities.
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Figure 5. ROC curves obtained by test set prediction using the proposed model compared
with 5 other classifiers, where BHFPS, BHVS, BVS, KNN, LDA and SVM are defined in
Table 1.
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Table 1

Results of test set prediction using the proposed model (BHFPS) compared with 5 other methods. Two methods of
basis expansions are used: cosine basis expansion and functional principal components. AUC: Area under ROC

curve; MisR: misclassification rate; Sens: sensitivity; Speci: specificity; BHFPS: the proposed Bayesian hierarchical
functional predictor selection model; BHVS: Bayesian hierarchical variable selection model; BVS: regular Bayesian
variable selection model; KNN: K-nearest neighbor; LDA: linear discriminant analysis; SVM: linear support vector

machine. See text for explanation of BVS and BHVS models

Using Cosine basis expansion Using FPC

Method AUC MisR Sens Spec AUC MisR Sens Spec

BHFPS 0.824 26.7% 81.1% 72.6% 0.826 26.9% 80.0% 72.5%

BHVS 0.808 25.4% 74.7% 74.6% 0.814 23.7% 74.7% 76.5%

BVS 0.802 28.1% 76.8% 71.4% 0.819 30.5% 84.2% 68.0%

KNN 0.697 27.7% 62.1% 73.3% 0.718 32.1% 71.8% 74.7%

LDA 0.796 27.3% 74.7% 72.5% 0.804 25.0% 75.8% 74.9%

SVM 0.657 56.6% 85.3% 39.2% 0.679 38.4% 68.4% 61.0%


